Flexible distribution network: definition, configuration, operation, and pilot project

Flexible distribution network: definition, configuration, operation, and pilot project

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this article, a new concept of flexible distribution network (FDN) is proposed for the power grid with increasing distributed energy resources (DERs) and power electronic devices. First, the authors define FDN as a flexible closed-loop operation smart distribution network with the capability of wide-area energy exchange. In FDNs, flexible networking devices are the key facilities, which upgrade traditional networking devices by soft open point (SOP). Second, several typical network configurations of FDN are presented, which facilitate smooth upgrades from traditional networks to FDNs. Third, the normal operation mode, N − 1 mode, and the related analysis methods of FDN are presented. Finally, the world's first three-terminal SOP-based FDN pilot project is introduced and analysed to demonstrate the advantages of FDN in controlling power flow and integrating DERs.


    1. 1)
      • 1. Cao, W., Wu, J., Jenkins, N., et al: ‘Benefits analysis of soft open points for electrical distribution network operation’, Appl. Energy, 2016, 165, pp. 3647.
    2. 2)
      • 2. Huang, A., Crow, M., Heydt, G., et al: ‘The future renewable electric energy delivery and management (FREEDM) system: the energy internet’, Proc. IEEE, 2011, 99, (1), pp. 133148.
    3. 3)
      • 3. Bloemink, J., Green, T.: ‘Benefits of distribution-level power electronics for supporting distributed generation growth’, IEEE Trans. Power Del., 2013, 28, (2), pp. 911919.
    4. 4)
      • 4. Konstantelos, I., Giannelos, S., Strbac, G.: ‘Strategic valuation of smart grid technology options in distribution networks’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 12931303.
    5. 5)
      • 5. Aithal, A., Long, C., Cao, W., et al: ‘Impact of soft open point on feeder automation’. Proc. IEEE Int. Energy Conf., Leuven, Belgium, April 2016, pp. 16.
    6. 6)
      • 6. Cao, W., Wu, J., Jenkins, N., et al: ‘Operating principle of soft open points for electrical distribution network operation’, Appl. Energy, 2016, 164, pp. 245257.
    7. 7)
      • 7. Wang, C., Song, G., Li, P., et al: ‘Optimal siting and sizing of soft open points in active electrical distribution networks’, Appl. Energy, 2017, 189, pp. 301309.
    8. 8)
      • 8. Long, C., Wu, J., Thomas, L., et al: ‘Optimal operation of soft open points in medium voltage electrical distribution networks with distributed generation’, Appl. Energy, 2016, 184, pp. 427437.
    9. 9)
      • 9. Romero-Ramos, E., Gomez-Exposito, A., Marano-Marcolini, A., et al: ‘Assessing the loadability of active distribution networks in the presence of DC controllable links’, IET Gener. Transm. Dis., 2011, 5, (11), pp. 11051113.
    10. 10)
      • 10. Tang, C., Chen, Y., Chen, Y., et al: ‘DC-Link voltage control strategy for three-phase back-to-back active power conditioners’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 63066316.
    11. 11)
      • 11. Wang, F., Wang, Y., Gao, Q., et al: ‘A control strategy for suppressing circulating currents in parallel-connected PMSM drives with individual DC links’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 16801691.
    12. 12)
      • 12. Trujillo, C., Velasco, D., Guarnizo, J., et al: ‘Design and implementation of a VSC for interconnection with power grids, using the method of identification the system through state space for the calculation of controllers’, Appl. Energy, 2011, 88, (9), pp. 31693175.
    13. 13)
      • 13. Maza-Ortega, J., Gomez-Exposito, A., Barragan-Villarejo, M., et al: ‘Voltage source converter-based topologies to further integrate renewable energy sources in distribution systems’, IET Renew. Power Gen., 2012, 6, (6), pp. 435445.
    14. 14)
      • 14. Yazdani, A., Dash, P.: ‘A control methodology and characterization of dynamics for a photovoltaic (PV) system interfaced with a distribution network’, IEEE Trans. Power Del., 2009, 24, (3), pp. 15381551.
    15. 15)
      • 15. Barragan, M., Mauricio, J., Marano, A., et al: ‘Operational benefits of multi-terminal DC-links in active distribution networks’. Proc. IEEE Power & Energy Society General Meeting, San Diego, CA, USA, July 2012, pp. 16.
    16. 16)
      • 16. Flottemesch, J., Rother, M.: ‘Optimized energy exchange in primary distribution networks with DC links’. Proc. IEEE Int. Conf. Electric Utility Deregulation, Hong Kong, China, April 2004, pp. 108116.
    17. 17)
      • 17. Western Power Distribution, Low Carbon Networks Fund submission from Western Power Distribution – Network Equilibrium. Available at, 2016.
    18. 18)
      • 18. SP Energy Networks, Electricity NIC submission: SP Energy Networks – ANGLE-DC. Available at, 2016.
    19. 19)
      • 19. Bloemink, J., Green, T.: ‘Increasing distributed generation penetration using soft normally-open points’. Proc. IEEE Power & Energy Society General Meeting, Providence, RI, USA, July 2010, pp. 18.
    20. 20)
      • 20. Bloemink, J., Green, T.: ‘Increasing photovoltaic penetration with local energy storage and soft normally-open points’. Proc. IEEE Power & Energy Society General Meeting, Detroit, MI, USA, July 2011, pp. 18.
    21. 21)
      • 21. Li, P., Song, G., Ji, H., et al: ‘A supply restoration method of distribution system based on soft open point’. Proc. IEEE Innovative Smart Grid Technologies Conf.-Asia, Melbourne, VIC, Australia, December, 2016, pp. 535539.
    22. 22)
      • 22. Aithal, A., Li, G., Wu, J.: ‘Grid side unbalanced fault detection using soft open point in an electrical distribution network’. Proc. Int. Conf. Applied Energy, Beijing, China, October 2016, pp. 28592864.
    23. 23)
      • 23. Bloemink, J., Green, T.: ‘Effects of power electronic compensationon distribution network thermal and voltage violations’. Proc. Power and Energy Society General Meeting, Vancouver, BC, Canada, July 2013, pp. 15.
    24. 24)
      • 24. Bifaretti, S., Zanchetta, P., Watson, A., et al: ‘Advanced power electronic conversion and control system for universal and flexible power management’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 231243.
    25. 25)
      • 25. She, X., Yu, X., Wang, F., et al: ‘Design and demonstration of a 3.6 kV-120 V/10 kVA solid-state transformer for smart grid application’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 39823996.
    26. 26)
      • 26. Zhao, T., Wang, G., Bhattacharya, S., et al: ‘Voltage and power balance control for a cascaded h-bridge converter based solid-state transformer’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 15231532.
    27. 27)
      • 27. Leeuwerke, R., Brayford, A., Robinson, A.: ‘Developments in ring main unit design for improved MV network performance’, Power Eng. J., 2000, 14, (6), pp. 270277.
    28. 28)
      • 28. Zhang, K., Zhang, S., Huang, B., et al: ‘Research on integration technology between distribution automation system and geographical information system’. Proc. Power and Energy Engineering Conf., Wuhan, China, March 2009, pp. 14.
    29. 29)
      • 29. Chaudhuri, N.R., Chaudhuri, B.: ‘Adaptive droop control for effective power sharing in multi-terminal dc (MTDC) grids’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 2129.
    30. 30)
      • 30. Kirakosyan, A., El-Saadany, E.F., El Moursi, M.S., et al: ‘DC voltage regulation and frequency support in pilot voltage droop-controlled multiterminal HVdc systems’, IEEE Trans. Power Del., 2018, 33, (3), pp. 11531164.

Related content

This is a required field
Please enter a valid email address