access icon free Power factor angle consistency control for decentralised power sharing in cascaded-type microgrid

The microgrid with cascaded H-bridge micro-converters (cascaded-type microgrid) is an effective way to integrate the distributed generators (DGs) into medium/high-voltage distribution energy system. Just like the islanded microgrid composed of paralleled inverters, achieving accuracy in power sharing and high voltage quality is a serious challenge in cascaded-type microgrid without communication. In this article, a decentralised control scheme is proposed to share the active and reactive power accurately under the resistance-inductance and resistance-capacitance loads. The power factor angle of each DG is assigned to be consistent in the steady state via regulating both the frequency and voltage. The proposed scheme can be easily implemented only based on the local measured signals. Meanwhile, excellent load voltage quality is achieved. Small-signal analysis method is performed to verify the effectiveness of the proposed scheme, and a guide for designing the power sharing coefficient is given. The cascaded-type microgrid model is developed through simulations and experiments to verify the performance of the proposed scheme.

Inspec keywords: invertors; power factor; power generation control; decentralised control; bridge circuits; frequency control; voltage control; distributed power generation; cascade networks

Other keywords: medium/high-voltage distribution energy system; load voltage quality; cascaded-type microgrid model; power sharing coefficient; cascaded H-bridge microconverters; islanded microgrid; small-signal analysis method; power factor angle consistency control; decentralised power sharing; resistance-inductance loads; decentralised control scheme; resistance-capacitance loads; reactive power

Subjects: Control of electric power systems; Distributed power generation; Multivariable control systems; Power electronics, supply and supervisory circuits; Distribution networks; DC-AC power convertors (invertors); Voltage control; Power system management, operation and economics; Frequency control

References

    1. 1)
      • 5. Iasonas, K., Nikos, H.: ‘Fully distributed economic dispatch of distributed generators in active distribution networks considering losses’, IET Gener. Transm. Distrib., 2017, 11, (3), pp. 627636.
    2. 2)
      • 27. Malinowski, M., Gopakumar, K., Rodriguez, J., et al: ‘A survey on cascaded multilevel inverters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 21972206.
    3. 3)
      • 21. Liu, Z., Su, M., Sun, Y., et al: ‘Optimal criterion and global/sub-optimal control schemes of decentralized economical dispatch for AC microgrid’, Int. J. Electr. Power Energy Syst., 2019, 104, pp. 3842. Available at https://doi.org/10.1016/j.ijepes.2018.06.045.
    4. 4)
      • 10. Brandao, D.I., Caldognetto, T., Marafão, F.P., et al: ‘Centralized control of distributed single-phase inverters arbitrarily connected to three-phase four-wire microgrids’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 437446.
    5. 5)
      • 11. Chen, J.F., Chu, C.L.: ‘Combination voltage-controlled and current controlled PWM inverters for UPS parallel operation’, IEEE Trans. Power Electron., 1995, 10, (5), pp. 547558.
    6. 6)
      • 16. Shafiee, Q., Guerrero, J.M., Juan, V.C., et al: ‘Distributed secondary control for islanded microgrids – a novel approach’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 10181031.
    7. 7)
      • 18. Han, H., Li, L., Wang, L., et al: ‘A novel decentralized economic operation in islanded AC microgrid’, Energies, 2017, 10, (6), pp. 118.
    8. 8)
      • 14. Xin, H., Zhang, L., Wang, Z., et al: ‘Control of island AC microgrids using a fully distributed approach’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 943945.
    9. 9)
      • 13. Buticchi, G., Carne, G.D., Barater, D., et al: ‘Analysis of the frequency-based control of a master/slave micro-grid’, IET Renew. Power Gener., 2016, 10, (10), pp. 15701576.
    10. 10)
      • 31. Li, L., Sun, Y., Liu, Y., et al: ‘Power factor consistency control for decentralized power sharing in islanded AC microgrids with cascaded inverters’. IECON 2017 – Conf. of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017, pp. 14351440.
    11. 11)
      • 32. Wu, X., Shen, C.: ‘Distributed optimal control for stability enhancement of microgrids with multiple distributed generators’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 40454059.
    12. 12)
      • 22. Majumder, R., Chaudhuri, B., Ghosh, A., et al: ‘Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 796808.
    13. 13)
      • 36. Reza, O.S., Richard, M.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom.Control, 2004, 49, (9), pp. 15201533.
    14. 14)
      • 17. Kim, Y., Kim, E., Moon, S., et al: ‘Distributed generation control method for active power sharing and self-frequency recovery in an islanded microgrid’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 544551.
    15. 15)
      • 20. Guerrero, J.M., De Vicuna, L.G., Matas, J., et al: ‘Output impedance design of parallel-connected UPS inverters with wireless load-sharing control’, IEEE Trans. Ind. Electron., 2005, 52, (4), pp. 11261135.
    16. 16)
      • 1. Jie, Y., Xinmin, J., Xuezhi, W., et al: ‘Decentralised control method for DC microgrids with improved current sharing accuracy’, IET Gener. Transm. Distrib., 2017, 11, (3), pp. 696706.
    17. 17)
      • 34. Guo, X.Q., Lu, Z.G., Wang, B.C., et al: ‘Dynamic phasors-based modeling and stability analysis of droop-controlled inverters for microgrid applications’, IEEE Trans. Smart Grid, 2014, 5, (6), pp. 29802987.
    18. 18)
      • 28. Chatzinikolaou, E., Rogers, D.J.: ‘A comparison of grid-connected battery energy storage system designs’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 69136923.
    19. 19)
      • 15. Mahmud, M.A., Hossain, M.J., Pota, H.R., et al: ‘Robust nonlinear distributed controller design for active and reactive power sharing in islanded microgrids’, IEEE Trans. Energy Convers., 2014, 29, (4), pp. 893903.
    20. 20)
      • 6. Mortezaei, A., Simoes, M.G., Bubshait, A.S., et al: ‘Multifunctional control strategy for asymmetrical cascaded H-bridge inverter in microgrid applications’, IEEE Trans. Ind. Appl., 2017, 53, (2), pp. 15381551.
    21. 21)
      • 35. Chandorkar, M.C.: ‘Distributed uninterruptible power supply systems’. Ph.D. dissertation, Univ. Wisconsin-Madison, Madison, WI, 1995.
    22. 22)
      • 9. Abdelaziz, M.M.A., Shaaban, M.F., Farag, H.E., et al: ‘A multistage centralized control scheme for islanded microgrids with PEV’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 927937.
    23. 23)
      • 19. Zhong, Q.: ‘Robust droop controller for accurate proportional load sharing among inverters operated in parallel’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12811290.
    24. 24)
      • 29. He, J., Li, Y.W., Wang, C., et al: ‘A hybrid microgrid with parallel and series connected micro-converters’, IEEE Trans. Power Electron., 2017, 33, (6), pp. 48174831.
    25. 25)
      • 39. Xin, H., Zhao, R., Zhang, L., et al: ‘A decentralized hierarchical control structure and self-optimizing control strategy for F-P type DGs in islanded microgrids’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 35.
    26. 26)
      • 38. Nutkani, I.U., Loh, P.C., Wang, P.: ‘Linear decentralized power sharing schemes for economic operation of AC microgrids’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 225234.
    27. 27)
      • 12. Caldognetto, T., Tenti, P.: ‘Microgrids operation based on master-slave cooperative control’, IEEE J. Emerg. Sel. Top. Power Electron., 2014, 2, (4), pp. 10811088.
    28. 28)
      • 3. Liu, Z., Su, M., Sun, Y., et al: ‘Existence and stability of equilibrium of DC microgrid with constant power loads’, IEEE Trans. Power Syst., 2018, pp. 11.
    29. 29)
      • 30. He, J., Li, Y., Liang, B., et al: ‘Inverse power factor droop control for decentralized power sharing in series-connected micro-converters based islanding microgrids’, IEEE Trans. Ind. Electron., 2017, 64, (9), pp. 74447454.
    30. 30)
      • 37. Simpson-Porco, J.W., Dörfler, F., Bullo, F.: ‘Synchronization and power sharing for droop-controlled inverters in islanded microgrids’, Automatica, 2013, 49, (9), pp. 26032611.
    31. 31)
      • 4. Chen, C., Duan, S., Cai, T., et al: ‘Smart energy management system for optimal microgrid economic operation’, IET Renew. Power Gener., 2011, 5, (3), pp. 258267.
    32. 32)
      • 26. Xiao, B., Hang, L., Wei, J., et al: ‘Modular cascaded H-bridge multilevel PV inverter with distributed MPPT for grid-connected applications’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 17221731.
    33. 33)
      • 25. Zhang, L., Sun, K., Xing, Y., et al: ‘A modular grid-tied connected photovoltaic generation system based on dc bus’, IEEE Trans. Power Electron., 2011, 26, (2), pp. 523531.
    34. 34)
      • 7. Hou, X., Sun, Y., Yuan, W., et al: ‘Conventional P-ω/Q-V droop control in highly resistive line of low-voltage converter-based AC microgrid’, Energies, 2016, 9, (11), pp. 119.
    35. 35)
      • 33. Mohamed, Y.A.-R.I., El-Saadanym, E.F.: ‘Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 28062816.
    36. 36)
      • 2. Li, L., Ye, H., Sun, Y., et al: ‘A communication-free economical-sharing scheme for cascaded-type microgrids’, Int. J. Electr. Power Energy Syst., 2019, 104, pp. 19. Available at https://doi.org/10.1016/j.ijepes.2018.06. 006.
    37. 37)
      • 24. Yu, Y., Konstantinou, G., Hredzak, B., et al: ‘Power balance of cascaded H-bridge multilevel converters for large-scale photovoltaic integration’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 292303.
    38. 38)
      • 23. Majumder, R., Ledwich, G., Ghosh, A., et al: ‘Droop control of converter interfaced microsources in rural distributed generation’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 27682778.
    39. 39)
      • 8. Shanxu, D., Yu, M., Jian, X., et al: ‘Parallel operation control technique of voltage source inverters in UPS’. Proc. IEEE Int. Conf., Hong Kong, 1999, pp. 883887.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5639
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5639
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading