Real-time energy management of a smart virtual power plant

Real-time energy management of a smart virtual power plant

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The real-time (RT) energy management of virtual power plants (VPPs) is a complex problem due to the coordinated operation of diverse energy resources and their associated uncertainties. This article presents a comparative analysis on alternative energy management models for a VPP that includes a wind power unit, an energy storage unit, and some flexible demands, which are interconnected within a small size electric energy system. The smart grid technology enables RT operation of the VPP by taking advantage of bidirectional communication infrastructure. To accomplish this task, the RT energy management is implemented through alternative decision-making tools, namely, (i) a robust model, (ii) a stochastic programming model, and (iii) a stochastic robust model. To handle uncertainties, these optimisation models use prediction intervals, scenarios, and a combination of both, respectively. A realistic case study provides a comparative out-of-sample analysis considering the impact of the different parameters used to manage risk in these three models.


    1. 1)
      • 1. Morales, J.M., Conejo, A.J., Madsen, H., et al: ‘Integrating renewables in electricity markets: operational problems’ (Springer, New York, 2014).
    2. 2)
      • 2. Conejo, A.J., Morales, J.M., Baringo, L.: ‘Real-time demand response model’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 236242.
    3. 3)
      • 3. Rahimiyan, M., Baringo, L., Conejo, A.J.: ‘Energy management of a cluster of interconnected price-responsive demands’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 645655.
    4. 4)
      • 4. Rahimiyan, M., Baringo, L.: ‘Strategic bidding for a virtual power plant in the day-ahead and real-time markets: a price-taker robust optimization approach’, IEEE Trans. Power Syst., 2016, 31, pp. 26762687.
    5. 5)
      • 5. Pandžić, H., Morales, J.M., Conejo, A.J., et al: ‘Offering model for a virtual power plant based on stochastic programming’, Appl. Energy, 2013, 105, pp. 282292.
    6. 6)
      • 6. Alharbi, W., Raahemifar, K.: ‘Probabilistic coordination of microgrid energy resources operation considering uncertainties’, Electr. Power Syst. Res., 2015, 128, pp. 110.
    7. 7)
      • 7. Dabbagh, S.R., Sheikh-El-Eslami, M.K.: ‘Risk assessment of virtual power plants offering in energy and reserve markets’, IEEE Trans. Power Syst., 2016, 31, pp. 35723582.
    8. 8)
      • 8. Domínguez, R., Baringo, L., Conejo, A.J.: ‘Optimal offering strategy for a concentrating solar power plant’, Appl. Energy, 2012, 98, pp. 316325.
    9. 9)
      • 9. Baringo, A., Baringo, L.: ‘A stochastic adaptive robust optimization approach for the offering strategy of a virtual power plant’, IEEE Trans. Power Syst., 2017, 32, pp. 34923504.
    10. 10)
      • 10. Liu, C., Lee, C., Chen, H., et al: ‘Stochastic robust mathematical programming model for power system optimization’, IEEE Trans. Power Syst., 2016, 31, pp. 821822.
    11. 11)
      • 11. Bertsimas, D., Sim, M.: ‘The price of robustness’, Oper. Res., 2004, 52, pp. 3553.
    12. 12)
      • 12. Conejo, A.J., Carrión, M., Morales, J.M.: ‘Decision making under uncertainty in electricity markets’ (Springer, New York, 2010).
    13. 13)
      • 13. Malysz, P., Sirouspour, S., Emadi, A.: ‘An optimal energy storage control strategy for grid-connected microgrids’, IEEE Trans. Smart Grid, 2014, 5, pp. 17851796.
    14. 14)
      • 14. Yang, L., He, M., Vittal, V., et al: ‘Stochastic optimization-based economic dispatch and interruptible load management with increased wind penetration’, IEEE Trans. Smart Grid, 2016, 7, pp. 730739.
    15. 15)
      • 15. Conejo, A.J., Contreras, J., Espínola, R., et al: ‘Forecasting electricity prices for a day-ahead pool-based electric energy market’, Int. J. Forecast., 2005, 21, (3), pp. 435462.
    16. 16)
      • 16. Tortelli, O.L., Lourenço, E.M., Garcia, A.V., et al: ‘Fast decoupled power flow to emerging distribution systems via complex pu normalization’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 13511358.
    17. 17)
      • 17. ‘ISO new England – US’. Available at
    18. 18)
      • 18. ‘University of Massachusetts – Wind Energy Center (UMWEC)’. Available at
    19. 19)
      • 19. Heitsch, H., Römisch, W.: ‘Scenario reduction algorithms in stochastic programming’, Comput. Optim. Appl., 2003, 24, pp. 187206.
    20. 20)
      • 20. Rahimiyan, M., Morales, J.M., Conejo, A.J.: ‘Evaluating alternative offering strategies for wind producers in a pool’, Appl. Energy, 2011, 88, pp. 49184926.
    21. 21)
      • 21. ‘The ILOG CPLEXAvailable at
    22. 22)
      • 22. Brooke, A., Kendrick, D., Meeraus, A., et al: ‘GAMS: a users guide’ (GAMS Development Corporation, Washington, DC, 1998).

Related content

This is a required field
Please enter a valid email address