Wind power forecast with error feedback and its economic benefit in power system dispatch

Wind power forecast with error feedback and its economic benefit in power system dispatch

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a novel prediction model for uni- and multi-variable forecast, where error feedback is added to the original forecast value predicted using the persistence model. The error feedback mechanism is constructed to find out the relationship between the errors and the original forecast values. Simulation studies are carried out using wind power data obtained from two databases, and the results demonstrate that the proposed model provides a more accurate and stable forecast compared to other methods. Based on this, the economic benefit of accurate wind power forecast has been analysed for power system dispatch, which aims to minimise the operation cost. The dispatch results of two scenarios have shown that accurate forecast result decreases the cost of reserve capacity, balancer set invoking capacity and the possibility of wind curtailment, which leads to more economic dispatch of power systems.


    1. 1)
      • 1. Farhat, I.A., El-Hawary, M.E.: ‘Dynamic adaptive bacterial foraging algorithm for optimum economic dispatch with valve-point effects and wind power’, IET Gener. Transm. Distrib., 2010, 4, (9), pp. 989999.
    2. 2)
      • 2. Paterakis, N.G., Erdin, O., Bakirtzis, A.G., et al: ‘Qualification and quantification of reserves in power systems under high wind generation penetration considering demand response’, IEEE Trans. Sustain. Energy, 2015, 6, (1), pp. 88103.
    3. 3)
      • 3. Forrest, S., MacGill, I.: ‘Assessing the impact of wind generation on wholesale prices and generator dispatch in the Australian national electricity market’, Energy Policy, 2013, 59, pp. 120132.
    4. 4)
      • 4. Foley, A.M., Leahy, P.G., Marvuglia, A., et al: ‘Current methods and advances in forecasting of wind power generation’, Renew. Energy, 2012, 37, (1), pp. 18.
    5. 5)
      • 5. Wu, J.L., Ji, T.Y., Li, M.S., et al: ‘Multi-step wind power forecast using mean trend detector and mathematical morphology-based local predictor’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 12161223.
    6. 6)
      • 6. Hong, D.Y., Ji, T.Y., Zhang, L.L., et al: ‘An indirect short-term wind power forecast approach with multi-variable inputs’. 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), Melbourne, VIC, Australia, November 2016, pp. 793798.
    7. 7)
      • 7. Haque, A.U., Nehrir, M.H., Mandal, P.: ‘A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting’, IEEE Trans. Power Syst., 2014, 29, (4), pp. 16631672.
    8. 8)
      • 8. Lan, F., Sang, C.C., Liang, J.J., et al: ‘Interval prediction for wind power based on conditional copula function’. Proc. Chinese Society for Electrical Engineering, 2016, 36, (1), pp. 7986.
    9. 9)
      • 9. Wan, C., Lin, J., Wang, J., et al: ‘Direct quantile regression for nonparametric probabilistic forecasting of wind power generation’, IEEE Trans. Power Syst., 2016, PP, (99), pp. 11.
    10. 10)
      • 10. Wan, C., Xu, Z., Pinson, P.: ‘Direct interval forecasting of wind power’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 48774878.
    11. 11)
      • 11. Khosravi, A., Nahavandi, S., Srinivasan, D., et al: ‘Constructing optimal prediction intervals by using neural networks and bootstrap method’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (8), p. 1810.
    12. 12)
      • 12. Khosravi, A., Nahavandi, S., Creighton, D.: ‘Prediction intervals for short-term wind farm power generation forecasts’, IEEE Trans. Sustain. Energy, 2013, 4, (3), pp. 602610.
    13. 13)
      • 13. Mao, M.Q., Ling, J., Chang, L.C., et al: ‘A novel short-term wind speed prediction based on MFEC’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, pp. 11.
    14. 14)
      • 14. Liang, Z.T., Liang, J., Wang, C.F., et al: ‘Short-term wind power combined forecasting based on error forecast correction’, Energy Convers. Manage., 2016, 119, pp. 215226.
    15. 15)
      • 15. Chang, G.W., Lu, H.J., Chang, Y.R., et al: ‘An improved neural network-based approach for short-term wind speed and power forecast’, Renew. Energy, 2017, 105, pp. 301311.
    16. 16)
      • 16. Bucksteeg, M., Niesen, L., Weber, C.: ‘Impacts of dynamic probabilistic reserve sizing techniques on reserve requirements and system costs’, IEEE Trans. Sustain. Energy, 2016, 7, (4), pp. 14081420.
    17. 17)
      • 17. Zhang, Z.S., Sun, Y.Z., Gao, D.W., et al: ‘A versatile probability distribution model for wind power forecast errors and its application in economic dispatch’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 31143125.
    18. 18)
      • 18. Lee, D., Baldick, R.: ‘Probabilistic wind power forecasting based on the Laplace distribution and golden search’. 2016 IEEE/PES Transmission and Distribution Conf. and Exposition (T D), Dallas, TX, USA, May 2016, pp. 15.
    19. 19)
      • 19. Liu, X.: ‘Emission minimisation dispatch constrained by cost and wind power’, IET Gener. Transm. Distrib., 2011, 5, (7), pp. 735742.
    20. 20)
      • 20. Ding, T., Wu, Z., Lv, J., et al: ‘Robust co-optimization to energy and ancillary service joint dispatch considering wind power uncertainties in real-time electricity markets’, IEEE Trans. Sustain. Energy, 2016, 7, (4), pp. 15471557.
    21. 21)
      • 21. Hill, D.C., McMillan, D., Bell, K.R.W., et al: ‘Application of autoregressive models to UK Wind speed data for power system impact studies’, IEEE Trans. Sustain. Energy, 2012, 3, (1), pp. 134141.
    22. 22)
      • 22. Suykens, J.A.K., Gestel, T.V., Brabanter, J.D., et al: ‘Least squares support vector machines’, Int. J. Circuit Theory Appl., 2002, 27, (6), pp. 605615.
    23. 23)
      • 23. Hetzer, J., David, C.Y., Bhattarai, K.: ‘An economic dispatch model incorporating wind power’, IEEE Trans. Energy Converse., 2008, 23, (2), pp. 603611.
    24. 24)
      • 24. Zhang, Z.S., Sun, Y.Z., Li, G.J., et al: ‘A solution of economic dispatch problem considering wind power uncertainty’, Autom. Electr. Power Syst., 2011, 35, (22), pp. 125130.
    25. 25)
      • 25. Elia: Wind power data. Available at
    26. 26)
      • 26. Bludszuweit, H., Dominguez-Navarro, J.A., Llombart, A.: ‘Statistical analysis of wind power forecast error’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 983991.
    27. 27)
      • 27. Chakhchoukh, Y., Panciatici, P., Bondon, P., et al: ‘A new robust estimation method for ARMA models’, IEEE Trans. Signal Process., 2009, 58, (7), pp. 35123522.

Related content

This is a required field
Please enter a valid email address