Frequency domain soil parameters inversion of horizontally multilayered earth model with considering high-frequency field

Frequency domain soil parameters inversion of horizontally multilayered earth model with considering high-frequency field

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A method to estimate soil parameters of horizontally multilayered earth model in frequency domain is developed with considering high-frequency field. The theoretical formula of complex apparent resistivity with considering high-frequency field is derived from Green's function. To avoid time-consuming numerical integration, complex image method is introduced to solve Sommerfeld integral. Simulated annealing algorithm is applied to optimise soil parameters. The accuracy of this method is confirmed by interpreting field data under the DC field. As the inversion results of this method are different from other literature's results in a four-layer model, the posterior analysis is made. Then this method is applied to the inversion of frequency domain soil parameters under both quasi-static field and high-frequency field. The differences of complex apparent resistivity distribution between quasi-static field and high-frequency field are compared at different frequencies.


    1. 1)
      • 1. Melicyoulos, A.P., Papalexopoulos, A.D., Webb, R.P., et al: ‘Estimation of soil parameters from driven rod measurements’, IEEE Trans. Power Appar. Syst., 1984, PAS-103, (9), pp. 25792587.
    2. 2)
      • 2. Nahman, J., Salamon, D.: ‘A practical method for the interpretation of earth resistivity data obtained from driven rod tests’, IEEE Trans. Power Deliv., 1988, 3, (4), pp. 13751379.
    3. 3)
      • 3. Del Alamo, J.L.: ‘A second order gradient technique for an improved estimation of soil parameters in a two-layer earth’, IEEE Trans. Power Deliv., 1991, 6, (3), pp. 11661170.
    4. 4)
      • 4. Seedher, H.R., Arora, J.K.: ‘Estimation of two layer soil parameters using finite wenner resistivity expressions’, IEEE Trans. Power Deliv., 1992, 7, (3), pp. 12131217.
    5. 5)
      • 5. Del Alamo, J.L.: ‘A comparison among eight different techniques to achieve an optimum estimation of electrical grounding parameters in two-layered earth’, IEEE Trans. Power Deliv., 1993, 8, (4), pp. 18901899.
    6. 6)
      • 6. Lagace, P.J., Fortin, J., Crainic, E.D.: ‘Interpretation of resistivity sounding measurements in N-layer soil using electrostatic images’, IEEE Trans. Power Deliv., 1996, 11, (3), pp. 13491354.
    7. 7)
      • 7. Zhang, B., Cui, X., Li, L., et al: ‘Parameter estimation of horizontal multilayer earth by complex image method’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 13941401.
    8. 8)
      • 8. Gonos, I.F., Stathopulos, I.A.: ‘Estimation of multilayer soil parameters using genetic algorithms’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 100106.
    9. 9)
      • 9. Pereira, W.R., Soares, M.G., Neto, L.M.: ‘Horizontal multilayer soil parameter estimation through differential evolution’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 622629.
    10. 10)
      • 10. Sen, M.K., Bhattacharya, B.B., Stoffa, P.L.: ‘Nonlinear inversion of resistivity sounding data’, Geophysics, 1993, 58, (4), pp. 496507.
    11. 11)
      • 11. Sharma, S.P.: ‘VFSARES–a very fast simulated annealing FORTRAN program for interpretation of 1-D DC resistivity sounding data from various electrode arrays’, Comput. Geosci., 2012, 42, (5), pp. 177188.
    12. 12)
      • 12. Chow, Y.L., Hojjat, N., Safavi-Naeini, S., et al: ‘Spectral Green's functions for multilayer media in a convenient computational form’, IEE Proc., Microw. Antennas Propag., 1998, 145, (1), pp. 8591.
    13. 13)
      • 13. Hamming, R.W.: ‘Numerical methods for scientists and engineers’ (McGraw-Hill, New York, 1962, 2nd edn. 1973).
    14. 14)
      • 14. Chow, Y.L., Yang, J.J., Fang, D.G., et al: ‘A closed-form spatial Green's function for the thick microstrip substrate’, IEEE Trans. Microw. Theory Tech., 1991, 39, (3), pp. 588592.
    15. 15)
      • 15. Yuan, M., Sarkar, T.K., Salazar-Palma, M.: ‘A direct discrete complex image method from the closed-form Green's functions in multilayered media’, IEEE Trans. Microw. Theory Tech., 2006, 54, (3), pp. 10251032.
    16. 16)
      • 16. Takahashi, T., Kawase, T.: ‘Analysis of apparent resistivity in a multi-layer earth structure’, IEEE Trans. Power Deliv., 1990, 5, (2), pp. 604612.
    17. 17)
      • 17. Messier, M.: ‘Another soil conductivity model’. Internal Rep., Jaycor, Santa Barbara, CA, 1985.
    18. 18)
      • 18. Corana, A., Marchesi, M., Martini, C., et al: ‘Minimizing multimodal functions of continuous variables with the ‘simulated annealing’ algorithm’, ACM Trans. Math. Softw., 1987, 13, (3), pp. 262280.
    19. 19)
      • 19. Ghorbani, A., Camerlynck, C., Florsch, N.: ‘CR1Dinv: a Matlab program to invert 1D spectral induced polarization data for the Cole-Cole model including electromagnetic effects’, Comput. Geosci., 2009, 35, (2), pp. 255266.

Related content

This is a required field
Please enter a valid email address