Real-time spatio-temporal trend and level (T&L) filtering scheme for early detection of voltage instability

Real-time spatio-temporal trend and level (T&L) filtering scheme for early detection of voltage instability

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Discovering early signatures of voltage instability can enhance situational awareness and facilitate emergency control. Such signatures usually appear as decaying trends in load voltages and increase in reactive power output of generators. Discrete control actions such as frequent switching of load tap changer (LTC) and capacitor banks, that are otherwise unmonitored, can also be crucial indicators of a voltage problem. Hence, the authors propose a unified early warning scheme (EWS) for detecting voltage instability. To quantify and correlate spatial, temporal (spatio-temporal) trends and level changes, the authors use a multivariate, adaptive trend and level (T&L) filter. A unique feature of the proposed scheme is the signature authentication, by verifying simultaneity in T&L changes across multivariate time series. The authors show that, by extrapolating trends, limit violations in bus voltages and generator reactive power output can be estimated well in advance. Further, the level-change detection logic is shown to have the ability to detect frequent LTC-actions directly from the bus voltage time series. While the T&L filtering scheme is validated on field phasor measurement unit (PMU) datasets, EWS and emergency control is demonstrated on the classical 10-bus voltage stability test system.


    1. 1)
      • 1. Zhang, P., Li, F., Bhatt, N.: ‘Next-generation monitoring, analysis, and control for the future smart control center’, IEEE Trans. Smart Grid, 2010, 1, (2), pp. 186192.
    2. 2)
      • 2. Vu, K., Novosel, D.: ‘Voltage instability predictor(VIP)-Method and system for performing adaptive control to improve voltage stability in power systems’. US Patent, no. US6219591B1, ABB Power T D company Inc., 2001.
    3. 3)
      • 3. Mats, L., Rehtanz, C., Bertsch, J.: ‘Real-time voltage stability assessment of transmission corridors’. Proc. of IFAC Power Plants and Power Systems Control Conf., Seoul, Korea, 2003.
    4. 4)
      • 4. Goh, H., Chua, Q., Lee, S., et al: ‘Power stability monitoring based on voltage instability prediction approach through wide area system’, Am. J. Appl. Sci., 2014, 11, (5), pp. 717731.
    5. 5)
      • 5. Sang-Wook, H., Lee, B., Kim, S., et al: ‘Real time wide area voltage stability index in the Korean metropolitan area’, J. Electr. Eng. Technol., 2009, 4, (4), pp. 451456.
    6. 6)
      • 6. Liu, X.: ‘Real-time voltage stability monitoring using synchrophasors’. PhD thesis, Washington State University, 2012.
    7. 7)
      • 7. Kessel, P., Glavitsch, H.: ‘Estimating the voltage stability of a power system’, IEEE Trans. Power Deliv., 1986, 1, (3), pp. 346354.
    8. 8)
      • 8. Doroudi, A., Nasrabadi, M., Razani, R.: ‘Two novel static and dynamic voltage stability based indexes for power system contingency ranking’, IET Gener. Transm. Distrib., 2018, 12, (8), pp. 18311837.
    9. 9)
      • 9. Glavic, M., Van Cutsem, T.: ‘A short survey of methods for voltage instability detection’. Proc. IEEE Power Energy Society General Meeting, San Diego, CA, USA, 2011, pp. 18.
    10. 10)
      • 10. Glavic, M., Van Cutsem, T.: ‘Wide-area detection of voltage instability from synchronized phasor measurements. Part I: principle’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 14081416.
    11. 11)
      • 11. Glavic, M., Van Cutsem, T.: ‘Wide-area detection of voltage instability from synchronized phasor measurements. Part II: simulation results’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 14171425.
    12. 12)
      • 12. Su, H., Chou, Y., Liu, C.: ‘Estimation of voltage stability margin using synchrophasors’. IEEE Power and Energy Society General Meeting, San Diego, CA, 2012, pp. 17.
    13. 13)
      • 13. Lavenius, J., Vanfretti, L., Taranto, G.: ‘Performance assessment of PMU-based estimation methods of Thevenin equivalents for real-time voltage stability monitoring’. 2015 IEEE 15th Int. Conf. on Environment and Electrical Engineering (EEEIC), Rome, 2015, pp. 19771982.
    14. 14)
      • 14. Tushar, , Biswas, S., Srivastava, A.: ‘A comparative study of model and measurement based voltage stability approaches’. 2015 North American Power Symp. (NAPS), Charlotte, NC, 2015, pp. 16.
    15. 15)
      • 15. De Souza, A., De Souza, J., Da Silva, A.: ‘On-line voltage stability monitoring’, IEEE Trans. Power Syst., 2000, 15, (4), pp. 13001305.
    16. 16)
      • 16. Dasgupta, S., Paramasivam, M., Vaidya, U., et al: ‘PMU-based model-free approach for short term voltage stability monitoring’. 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, 2012, pp. 18.
    17. 17)
      • 17. Leelaruji, R., Vanfretti, L., Almas, M.: ‘Voltage stability monitoring using sensitivities computed from synchronized phasor measurement data’. 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, 2012, pp. 18.
    18. 18)
      • 18. Nadkarni, A., Soman, S.: ‘Applications of trend-filtering to bulk PMU time-series data for wide-area operator awareness’. 2018 Power Systems Computation Conf. (PSCC), Dublin, Ireland, 2018, pp. 17.
    19. 19)
      • 19. More, J., Wild, S.: ‘Estimating derivatives of noisy simulations’, ACM Trans. Math. Softw., 2012, 38, (3), pp. 19:119:21.
    20. 20)
      • 20. Kim, S., Boyd, S.: ‘L1-trend filtering’, SIAM Rev., 2009, 51, (2), pp. 339360.
    21. 21)
      • 21. Tibshirani, R.: ‘Adaptive piecewise polynomial estimation via trend filtering’, Ann. Stat., 2014, 42, (1), pp. 285323.
    22. 22)
      • 22. De Jong, R., Sakarya, N.: ‘The econometrics of the Hodrick-Prescott filter’ (Department of Economics, Ohio State University, Columbus, OH, USA, 2013).
    23. 23)
      • 23. Friedman, J., Hastie, T., Tibshirani, R.: ‘A note on the group LASSO and a sparse group LASSO’, January 2010, preprint, arXiv:1001.0736.
    24. 24)
      • 24. Salunkhe, K., Gajjar, G., Soman, S., et al: ‘Implementation and applications of a wide area frequency measurement system synchronized using network time protocol’. 2014 IEEE PES General Meeting | Conf. & Exposition, National Harbor, MD, 2014, pp. 15.
    25. 25)
      • 25. Lavand, S.A., Gajjar, G.R., Soman, S.A., et al: ‘Mining spatial frequency time series data for event detection in power systems’. 13th Int. Conf. on Development in Power System Protection 2016 (DPSP), Edinburgh, 2016, pp. 16.
    26. 26)
      • 26. Taylor, C.W., Electric Power Research Institute. – EPRI: ‘Power system voltage stability’ (McGraw-Hill, New York, NY, 1994), pp. Appendix E.
    27. 27)
      • 27. Vournas, C., Karystianos, M., Van Cutsem, T.: ‘Load tap changers in emergency and preventive voltage stability control’, IEEE Trans. Power Syst., 2004, 19, (1), pp. 492498.
    28. 28)
      • 28. ‘PowerWorld Corporation – Simulator 20’. Available at, accessed October 2018.
    29. 29)
      • 29. Power Grid Corporation of India Ltd.: ‘Unified real time dynamic state measurement’. Tech. Rep., Gurgaon, India, February 2012.

Related content

This is a required field
Please enter a valid email address