Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free New predictive analytic-aided response-based system integrity protection scheme

The ever-increasing power demand coupled with limited power transfer corridors and minimum redundancy have forced power system operation close to its security limits. Further, increase in renewable penetration, market deregulation, and mal-operation of protective devices under stressed conditions has imposed serious threats to power system stability. To overcome these operational challenges, a new response-based system integrity protection scheme (SIPS) is proposed here. The proposed scheme works towards preserving system integrity in two ways. First, an apparent impedance-based relay security index (RSI) is introduced to prevent the zone 3 mal-operations of distance relays under stressed situations and achieve accelerated zone 3 operation during faults. Second, a system stability index (SSI) computed from the generator rotor angles is forecasted using a predictive analytic to foresee system instability, if any, and take corrective actions in real time. The scheme can be used for area-based monitoring and control of system stability, does not require coherency group identification, remains unaffected by changes in network topology, and can effectively function for first swing stable contingencies. The scheme is tested on IEEE 39-bus New England system and the results obtained validate the reliability of scheme in maintaining system integrity.

References

    1. 1)
      • 4. Sykes, J., Hu, Y., Adamiak, M., A, et al: ‘IEEE/PES PSRC report on design and testing of selected system integrity protection schemes’. 67th Annual Conf. for Protective Relay Engineers, College Station, TX, USA, 2014, pp. 738742.
    2. 2)
      • 35. Padiyar, K.R.: ‘Power system dynamics:stability and control’ (BS Publications, Andhra Pradesh, India, 2008, 2nd edn.).
    3. 3)
      • 21. TC.57.: ‘Communication networks and systems in substations’, IEC 61850, 2003. Available at: https://www.iec.ch/smartgrid/standards/ [Accessed: 20- Sept-2018].
    4. 4)
      • 13. Sterpin, I., Kirincic, V., Skok, S.: ‘The educational model of the system integrity protection scheme’. 2013 36th Int. Convention on Information & Communication Technology Electronics & Microelectronics (MIPRO), Opatija, Croatia, 2013, pp. 12351240.
    5. 5)
      • 28. Ljung, L.: ‘Prediction error estimation methods’, Circuits, Syst. Signal Process., 2002, 21, (1), pp. 1121.
    6. 6)
      • 22. Ozansoy, C.R., Zayegh, A., Kalam, A.: ‘Time synchronisation in a IEC 61850 based substation automation system’. 2008 Australasian Universities Power Engineering Conf., Sydney, NSW, Australia, 2008, pp. 17.
    7. 7)
      • 16. Pipelzadeh, Y., Moreno, R., Chaudhuri, B., et al: ‘An assessment of transient AssistiveMeasures using HVDC for special protection schemes: case on the GB transmission system’. 10th IET Int. Conf. on AC and DC Power Transmission (ACDC 2012), Birmingham, UK, 2012, pp. 16.
    8. 8)
      • 23. Das, N., Islam, S.: ‘Analysis of power system communication architectures between substations using IEC 61850’. 5th Brunei Int. Conf. on Engineering and Technology (BICET 2014), Bandar Seri Begawan, Brunei, 2014, pp. 16.
    9. 9)
      • 27. Brockwell, P.J., Davis, R.A.: ‘Introduction to time series and forecasting’, ‘Springer texts in statistics’ (Springer International Publishing, Switzerland, 2016, 3rd edn).
    10. 10)
      • 5. Skok, S.: ‘System integrity protection scheme based on PMU technology’ (Institution of Engineering and Technology, Stevenage, UK, 2016).
    11. 11)
      • 32. Asgari, A., Firouzjah, K.G.: ‘Optimal PMU placement for power system observability considering network expansion and N-1 contingencies’, IET Gener. Trans. Dist., 2018, 12, (18), pp. 42164224.
    12. 12)
      • 24. SIEMENS AG.: ‘SIPROTEC 7SA522 Distance Protection’, 2016. Available at: https://w3.siemens.com/smartgrid/global/en/productssystems-solutions/Protection/distance-protection [Accessed: 20- Sept-2018].
    13. 13)
      • 11. Karlsson, D.: ‘System protection schemes in power network based on new principles’, 2004. Available at: https://search-ext.abb.com/library/Download.aspx?DocumentID=PAPER_2000_03&LanguageCode=en&DocumentPartId=&Action=Launch (Accessed: 20 December 2017).
    14. 14)
      • 30. Rahman, T., Sankaran, S., Seeley, N., et al: ‘Capturing generator rotor angle and field quantities - SDG&E experience and approach to using nontraditional generator measurements’. 70th Annual Georgia Tech Protective Relaying Conf., Atlanta, Georgia, 2016.
    15. 15)
      • 6. Chou, Y.T., Wang, Y.J., Liu, C.W., et al: ‘A dynamic security level monitoring approach for system integrity protection scheme’. TENCON Spring Conf., Sydney, NSW, Australia, 2013, pp. 146150.
    16. 16)
      • 29. Hu, J., Wu, Y., Li, J.: ‘Research of synchronous generator angle measurement’, Power Syst. Technol., 2006, 30, pp. 354357.
    17. 17)
      • 19. De La Quintana, A., Palma Behnke, R.: ‘Challenges for special protection systems in the Chilean electricity market’. Power and Energy Society General Meeting (PES), Vancouver, BC, Canada, 2013, pp. 15.
    18. 18)
      • 15. Arriba, C.D., Lopez, A., Cardenas, J., et al: ‘Implementation of a system integrity protection scheme in the channel islands’, CIRED – Open Access Proc. J., 2017, 2017, (1), pp. 12021205.
    19. 19)
      • 2. ‘Report of the enquiry committee on grid disturbance in northern region on 30th July 2012 and in northern, eastern & north-eastern region on 31st July, 2012’, Available at: http://www.powermin.nic.in/pdf/GRID_ENQ_REP_16_8_12.pdf [Accessed: 18 January 2018]).
    20. 20)
      • 26. Khodaparast, J., Khederzadeh, M.: ‘Three-phase fault detection during power swing by transient monitor’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 25582565.
    21. 21)
      • 31. Wei, Q., Han, X., Guo, W., et al: ‘The principle of absolute rotor angle control and its effect on suppressing inter-area low frequency oscillations’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 10391046.
    22. 22)
      • 3. Anderson, P., LeReverend, B.: ‘Industry experience with special protection schemes’, IEEE Trans. Power Syst., 1996, 11, (3), pp. 11661179.
    23. 23)
      • 25. Dubey, R., Samantaray, S.R., Panigrahi, B.K., et al: ‘Phase-space-based symmetrical fault detection during power swing’, IET Gener. Trans. Dist., 2016, 10, (8), pp. 19471956.
    24. 24)
      • 18. Vaiman, M., Hines, P., Jiang, J., et al: ‘Mitigation and prevention of cascading outages: methodologies and practical applications’. Power and Energy Society General Meeting (PES), Vancouver, BC, Canada, 2013, pp. 15.
    25. 25)
      • 37. Wu, J., Zhang, D., Zhou, J., et al: ‘PMU standard of China’. APCCAS 2008 – 2008 IEEE Asia Pacific Conf. on Circuits and Systems, Macao, China, 2008, pp. 639641.
    26. 26)
      • 20. Ziegler, G.: ‘Numerical distance protection: principles and applications’, (John Wiley & Sons, Weinheim, Germany, 2011, 4th edn).
    27. 27)
      • 17. Carneiro, J.S., Ferrarini, L.: ‘Preventing thermal overloads in transmission circuits via model predictive control’, IEEE Trans. Control Syst. Tech., 2010, 18, (6), pp. 14061412.
    28. 28)
      • 33. Ghahremani, E., Kamwa, I.: ‘Online state estimation of a synchronous generator using unscented Kalman filter from phasor measurements units’, IEEE Trans. Energy Conv., 2011, 26, (4), pp. 10991108.
    29. 29)
      • 34. Hiskens, I.: ‘IEEE PES task force on benchmark systems for stability controls’, 2013. Available at: http://sites.ieee.org/pes-psdp/benchmark-systems-2/ [Accessed: 10- Dec- 2017].
    30. 30)
      • 9. Sigrist, L., Egido, I., Rouco, L.: ‘A method for the design of UFLS schemes of small isolated power systems’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 951958.
    31. 31)
      • 36. Khandeparkar, K., Ramamritham, K., Gupta, R., et al: ‘Timely query processing in smart electric grids: algorithms and performance’. Proc. of the 2015 ACMSixth Int. Conf. on Future Energy Systems, Bangalore, India, 2015, pp. 161170.
    32. 32)
      • 10. Agrawal, V.K., Porwal, R., Kumar, R., et al: ‘Deployment of system protection schemes for enhancing reliability of power system: operational experience of wide area SPS in northern regional power system in India’. 2011 Int. Conf. on Power and Energy Systems (ICPS), Chennai, India, 2011, pp. 16.
    33. 33)
      • 14. Panteli, M., Crossley, P.A., Fitch, J.: ‘Design of dependable and secure system integrity protection schemes’, Int. J. Electr. Power Energy Syst., 2015, 68, pp. 1525.
    34. 34)
      • 7. Class, L.A.O., Hopkinson, K.M., Wang, X., et al: ‘A robust communication-based special protection system’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 13141324.
    35. 35)
      • 12. Kundu, P., Pradhan, A.K.: ‘Enhanced protection security using the system integrity protection scheme (SIPS)’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 228235.
    36. 36)
      • 1. Andersson, G., Donalek, P., Farmer, R., et al: ‘Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 19221928.
    37. 37)
      • 8. Du, X., Crossley, P.: ‘A system integrity protection scheme for transient instability using synchronized measurement’. Int. Conf. on Advanced Power System Automation and Protection (APAP), Beijing, China, 2011, vol. 3, pp. 20182023.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5585
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5585
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address