http://iet.metastore.ingenta.com
1887

Optimisation of droop coefficients of multiple distributed generators in a micro-grid

Optimisation of droop coefficients of multiple distributed generators in a micro-grid

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An optimisation technique employing artificial bee colony algorithm has been proposed for determining the droop parameters of the distributed generators in a micro-grid, operating in isolated mode. The proposed method minimises the active power loss and maintains a flat voltage profile. The bus interfacing the main and the micro-grid has been treated as a voltage regulated bus so as to facilitate seamless transfer from the autonomous to the grid-connected mode of operation and conversely.

References

    1. 1)
      • 1. Kirthiga, M.V., Daniel, S.A., Gurunathan, S.: ‘A methodology for transforming an existing distribution network in to a sustainable autonomous micro-grid’, IEEE Trans. Sustain. Energy, 2013, 4, (1), pp. 3141.
    2. 2)
      • 2. Olivares, D.E., Mehrizi-Sani, A., Etemadi, A.H., et al: ‘Trends in micro-grid control’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19051919.
    3. 3)
      • 3. Abdelaziz, M.M.A., Farag, H.E., El-Saadany, E.F., et al: ‘A novel and generalized three-phase power flow algorithm for islanded micro-grids using a Newton trust region method’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 190201.
    4. 4)
      • 4. Jiayi, H., Chuanwen, J., Rong, X.: ‘A review on distributed energy resources and microGrid’, Renew. Sust. Energy Rev., 2008, 12, pp. 24722483.
    5. 5)
      • 5. Díaz, G., González-Morán, C., Gómez-Aleixandre, J., et al: ‘Scheduling of droop coefficients for frequency and voltage regulation in isolated micro-grids’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 489496.
    6. 6)
      • 6. Abdelaziz, M.M.A., Farag, H.E., El-Saadany, : ‘Optimum droop parameter setting of islanded microgrids with renewable energy sources’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 434445.
    7. 7)
      • 7. Li, Y., Xu, Z., Zhang, J., et al: ‘Variable droop voltage control for wind farm’, IEEE Trans. Sustain. Energy, 2018, 9, (1), pp. 491493.
    8. 8)
      • 8. Zhong, Q.C., Konstantopoulos, G.C.: ‘Current-limiting droop control of grid-connected inverters’, IEEE Trans. Ind. Electron., 2017, 64, (7), pp. 59635973.
    9. 9)
      • 9. Trivedi, A., Singh, M.: ‘Repetitive controller for VSIs in droop-based AC-microgrid’, IEEE Trans. Power Electron., 2017, 32, (8), pp. 65956604.
    10. 10)
      • 10. Jamshidifar, A.A., Jovcic, D.: ‘3-Level cascaded voltage source converters controller with dispatcher droop feedback for direct current transmission grids’, IET Gener. Transm. Distrib., 2015, 9, (6), pp. 571579.
    11. 11)
      • 11. Stamatiou, G., Bongiorno, M.: ‘Power-dependent droop-based control strategy for multi-terminal HVDC transmission grids’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 383391.
    12. 12)
      • 12. Zhong, Q.C., Ming, W.L.., Zeng, Y.: ‘Self-synchronized universal droop controller’, IEEE Access., 2016, 4, pp. 71457153.
    13. 13)
      • 13. Yu, K., Wang, S., Ni, J., et al: ‘Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 695705.
    14. 14)
      • 14. Rana, R., Singh, M., Mishra, S.: ‘Design of modified droop controller for frequency support in microgrid using fleet of electric vehicles’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 36273636.
    15. 15)
      • 15. TECHNICAL REPORT-TR06: ‘An idea based on honey bee swarm for numerical optimization’ (Erciyes University, Engineering Faculty, Kayseri, Türkiye2005). Available at: https://pdfs.semanticscholar.org/cf20/e34a1402a115523910d2a4243929f6704db1.pdf.
    16. 16)
      • 16. OE & Electricity: ‘DOE microgrid workshop report’ (Office of Electricity Delivery and Energy Reliability Smart Grid R&D Program, Department of Energy, USA, 2011), pp. 126[Online]. Available at: http://energy.gov/oe/downloads/microgrid-workshop-report-august-2011.
    17. 17)
      • 17. Khodaei, A.: ‘Provisional microgrids’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 11071115.
    18. 18)
      • 18. Vandoorn, T.L., Kooning, J.D.M.D., Meersman, B., et al: ‘Control of storage elements in an islanded microgrid with voltage-based control of DG units and loads’, Electr. Power Energy Syst., 2015, 64, pp. 9961006.
    19. 19)
      • 19. Lopes, J.A.P., Moreira, C.L., Madureira, A.G.: ‘Defining control strategies for microGrids islanded operation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 916924.
    20. 20)
      • 20. Lasseter, R., Piagi, P.: ‘Providing premium power through distributed resources’. Proc. of the 33rd Hawaii Int. Conf. on System Sciences, Maui, HI, USA, January 2000, DOI: 10.1109/HICSS.2000.926772.
    21. 21)
      • 21. Chandorkar, M.C., Divan, D.M., Adapa, R.: ‘Control of parallel connected inverters in standalone ac supply systems’, IEEE Trans. Ind. Appl., 1993, 29, (1), pp. 136143.
    22. 22)
      • 22. Barklund, E., Pogaku, N., Prodanovic, M., et al: ‘Energy management in autonomous micro-grid using stability-constrained droop control of inverters’, IEEE Trans. Power Electron., 2008, 23, (5), pp. 23462352.
    23. 23)
      • 23. Bidram, A., Davoudi, A., Lewis, F.L., et al: ‘Secondary control of microgrids based on distributed cooperative control of multi-agent systems’, IET Gener. Transm. Distrib., 2013, 7, (8), pp. 822831.
    24. 24)
      • 24. Ahn, S., Park, J., Chung, I., et al: ‘Power-sharing method of multiple distributed generators considering control modes and configurations of a micro-grid’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 20072016.
    25. 25)
      • 25. Loh, P.C., Li, D., Chai, Y.K., et al: ‘Autonomous operation of hybrid micro-grid with AC and DC sub grids’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 22142223.
    26. 26)
      • 26. Simpson-Porco, J.W., Dörfler, F., Bullo, F., et al: ‘Stability, power sharing, & distributed secondary control in droop-controlled micro-grids’. IEEE Int. Conf. on Smart Grid Communications (SmartGridComm), Vancouver, BC, Canada, October 2013.
    27. 27)
      • 27. Kundur, P.: ‘Power system loads’, in Balu, N.J., Lauby, M.G. (Eds.): ‘Power system stability and control’ (McGraw-Hill, New York, NY, USA,, 1994), pp. 271314.
    28. 28)
      • 28. Karaboga, D., Basturk, B.: ‘On the performance of artificial bee colony (ABC) algorithm’, Appl. Soft Comput., 2008, 8, (1), pp. 687697.
    29. 29)
      • 29. Karaboga, D., Ozturk, C.: ‘A novel clustering approach: artificial bee colony (ABC) algorithm’, Appl. Soft Comput., 2011, 11, (1), pp. 652657.
    30. 30)
      • 30. Chandrasekaran, K., Simon, S.P.: ‘Multi-objective unit commitment problem with reliability function using fuzzified binary real coded artificial bee colony algorithm’, IET Gener. Transm. Distrib., 2012, 6, (10), pp. 10601073.
    31. 31)
      • 31. Singh, S., Kaushik, S.C.: ‘Optimal sizing of grid integrated hybrid PV-biomass energy system using artificial bee colony algorithm’, IET Renew. Power Gener., 2016, 10, (5), pp. 642650.
    32. 32)
      • 32. Aman, M.M, Jasmon, G.B., Mokhlis, H., et al: ‘Optimum tie switches allocation and DG placement based on maximisation of system loadability using discrete artificial bee colony algorithm’, IET Gener. Transm. Distrib., 2016, 10, (10), pp. 22772284.
    33. 33)
      • 33. Singh, D., Misra, R.K., Singh, D.: ‘Effect of load models in distributed generation planning’, IEEE Trans. Power Syst.s, 2007, 22, (4), pp. 22042212.
    34. 34)
      • 34. Rezaei, N., Kalantar, M.: ‘Stochastic frequency-security constrained energy and reserve management of an inverter interfaced islanded micro-grid considering demand response programs’, Electr. Power Energy Syst., 2015, 69, pp. 273286.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5548
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5548
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address