Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Improved non-intrusive identification technique of electrical appliances for a smart residential system

Electrical load monitoring techniques are valuable to consumer site for energy saving, permitting reduction in electricity costs. Nowadays, smart grid technology incorporates advanced load monitoring applications, enabling efficient consumption of electrical energy. Non-intrusive load monitoring (NILM) is a moderately new practice to identify the power consumption of individual appliances of a consumer from the aggregated household at a single point of measurement. In this study, an improved NILM technique is proposed by using a shunt passive filter installed at the source side of any residential complex. The proposed method can be realised in two steps. The first step is to determine the harmonic impedance at the load side for different groups of loads for a single household. The second step is to implement a fuzzy rule-based approach for identification of different loads at the consumer end. Suitable simulations backed by experiments are demonstrated in this study to validate the viability of the proposed methodology.

References

    1. 1)
      • 28. Chang, H.H., Lin, L.S., Chen, N.M., et al: ‘Particle swarm optimization based non-intrusive demand monitoring and load identification in smart meters’. Proc. IEEE Industrial Society Annual Meeting, 2012, pp. 18.
    2. 2)
      • 3. Hart, G.W.: ‘Nonintrusive appliance load monitoring’, IEEE Proc., Dec. 1992,80, (12), pp. 18701891.
    3. 3)
      • 31. Arrillaga, J., Watson, N.R.: ‘Power system harmonics’ (Wiley, Chichester, UK, 2003, 2nd edn.).
    4. 4)
      • 12. Leeb, S.B., Shaw, S.R., Kirtley, J.L.: ‘Transient event detection in spectral envelope estimates for nonintrusive load monitoring’, IEEE Trans. Power Del., 1995, 10, (3), pp. 12001210.
    5. 5)
      • 17. Gillis, J.M., Alshareef, S.M., Morsi, W.G.: ‘Nonintrusive load monitoring using wavelet design and machine learning’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 320328.
    6. 6)
      • 22. Dinesh, C., Nettasinghe, B.W., Goddaliyadda, R.I., et al: ‘Residential appliance identification based on spectral information of low frequency smart meter measurements’, IEEE Trans. Smart Grid, 2015, 7, (6), pp. 17811792.
    7. 7)
      • 25. Henao, N., Agbossou, K., Kelouwani, S., et al: ‘Approach in nonintrusive type I load monitoring using subtractive clustering’, IEEE Trans. Smart Grid, 2017, 8, (2), pp. 812821.
    8. 8)
      • 16. Chang, H., Chen, K., Tsai, Y., et al: ‘A new measurement method for power signatures of nonintrusive demand monitoring and load identification’, IEEE Trans. Ind. Appl., 2012, 48, (2), pp. 764771.
    9. 9)
      • 8. Sultanem, F.: ‘Using appliance signature for monitoring residential loads at meter panel level’, IEEE Trans. Power Del., 1991, 6, (4), pp. 13801385.
    10. 10)
      • 24. Du, L., Restrepo, J.A., Yang, Y., et al: ‘Nonintrusive, self-organizing, and probabilistic classification and identification of plugged-in electric loads’. IEEE Trans. Smart Grid, 2013, 4, (3), pp. 13711380.
    11. 11)
      • 19. Wang, Z., Zheng, G.: ‘Residential appliances identification and monitoring by a nonintrusive method’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 8092.
    12. 12)
      • 6. Wichakool, W.: ‘Advanced nonintrusive load monitoring system’. PhD Thesis, Massachusetts Inst. Technol., Cambridge, MA, USA, 2011.
    13. 13)
      • 7. Wichakool, W., Remscrim, Z., Orji, U.A., et al: ‘Smart metering of variable power loads’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 189198.
    14. 14)
      • 21. Hassan, T., Javed, F., Arshad, N.: ‘An empirical investigation of V-I trajectory based load signatures for non-intrusive load monitoring’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 870878.
    15. 15)
      • 14. Liang, J., Ng, S., Kendall, G., et al: ‘Load signature study-part I: basic concept signature, and methodology’, IEEE Trans. Power Del., 2010, 25, (2), pp. 551560.
    16. 16)
      • 5. Dong, M., Meira, P., Xu, W., et al: ‘Non-intrusive signature extraction for major residential loads’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 14211430.
    17. 17)
      • 33. Driankov, D., Hellendoorn, H., Reinfrank, M.: ‘An introduction to fuzzy control’ (Springer, Berlin, Heidelberg, Germany, 1996).
    18. 18)
      • 23. Lin, Y.-H., Tsai, M.-S.: ‘Non-intrusive load monitoring by novel neuro-fuzzy classification considering uncertainties’. IEEE Trans. Smart Grid, 2014, 5, (5), pp. 23762384.
    19. 19)
      • 4. Dong, M., Meira, P., Xu, W., et al: ‘An event window based load monitoring technique for smart meters’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 787796.
    20. 20)
      • 15. Srinivasan, D., Ng, W.S., Liew, A.C.: ‘Neural–network based signature recognition for harmonic source identification’, IEEE Trans. Power Del., 2006, 21, (1), pp. 398405.
    21. 21)
      • 20. He, D., Du, L., Yang, Y., et al: ‘Front-end electronic circuit topology analysis for model-driven classification and monitoring of appliance loads in smart buildings’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 22862293.
    22. 22)
      • 29. Ghosh, S., Chatterjee, A., Chatterjee, D.: ‘A novel non-intrusive load monitoring technique for domestic applications’. Proc. 31st Indian Engineering Congress, Kolkata, India, 15–16 December 2016, pp. 149153.
    23. 23)
      • 27. Lin, Y.-H., Tsai, M.-S.: ‘An advanced home energy management system facilitated by nonintrusive load monitoring with automated multiobjective power scheduling’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 18391851.
    24. 24)
      • 11. Cole, A.I., Albicki, A.: ‘Data extraction for effective non-intrusive identification of residential power loads’. IEEE Instrument and Measurement Technology Conf., St. Paul, MN, USA, 18–21 May 1998, pp. 812815.
    25. 25)
      • 1. Advanced Metering Infrastructure, India Smart Grid Week, 17 March, pp. 113, available at www.indiasmartgrid.org, accessed 24 October 2016.
    26. 26)
      • 2. Zeifman, M., Roth, K.: ‘Nonintrusive appliance load monitoring: review and outlook’, IEEE Trans. Consum. Electron., 2011, 57, (1), pp. 7684.
    27. 27)
      • 13. Laughman, C., Lee, K.D., Cox, R., et al: ‘Power signature analysis’, IEEE Power Energy Mag.., 2003, 1, (2), pp. 5663.
    28. 28)
      • 18. Gillis, J.M., Alshareef, S.M., Morsi, W.G., et al: ‘Designing new orthogonal high order wavelets for non-intrusive load monitoring’, IEEE Trans. Smart Grid, 2017, 65, (3), pp. 25782589.
    29. 29)
      • 10. Wichakool, W., Avestruz, A., Cox, R.W., et al: ‘Modeling and estimating current harmonics of variable electronic loads’, IEEE Trans. Power Electron., 2009, 24, (12), pp. 28032811.
    30. 30)
      • 9. Lee, K. D., Leeb, S.B., Norford, L.K., et al: ‘Estimation of variable-speed-drive power consumption from harmonic content’, IEEE Trans. Energy Convers., 2005, 20, (3), pp. 566574.
    31. 31)
      • 30. Pomilio, J.A., Deckmann, S.M.: ‘Characterization and compensation of harmonics and reactive power of residential and commercial loads’, IEEE Trans. Power Del., 2007, 22, (2), pp. 10491055.
    32. 32)
      • 32. Zadeh, L.: ‘Fuzzy sets’, Inf. Control, 1965, 8, (3), pp. 338353.
    33. 33)
      • 26. Fengji, L., Ranzi, G., Kong, W., et al: ‘Non-intrusive energy saving appliance recommender system for smart grid residential users’. IET Gener. Transm. Distrib., 2017, 11, (7), pp. 17861793.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5475
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5475
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address