Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Protection of inverter-based microgrids from ground faults by an innovative directional element

The complicated response of inverter-interfaced distributed generators (IIDG) to faults has been reported, which severely affects all parts of relaying, i.e. fault sensing and polarisation, and faulted phase selection. Given this, the root causes of difficulties in dealing with the protection of inverter-based microgrids are explained. Then, the study describes a directional element using unique features of zero-sequence components that retains satisfactory performance even in IIDG-based microgrids. The zero-sequence component is the only sequence component that can be calculated in the time domain without time delay and thus can cause less delay in the outcome of protective schemes compared with the other two sequences. With this, instantaneous zero-sequence power is defined and one term derived from it, zero-sequence reactive power, is utilised to polarise ground faults. It is proven that the zero-sequence reactive power is negative for forwarding ground faults and positive for reverse ground faults. An interesting feature is that the zero-sequence reactive power is calculated by averaging a new quantity in the time domain over half a power cycle. Hence, the time delay is half that of the conventional phasor-based methods. A sample microgrid is simulated in MATLAB/SIMULINK to evaluate the directional element and the results demonstrate the improvements.

References

    1. 1)
      • 31. IEEE recommended practice for utility interface of photovoltaic (PV) systems’, IEEE Std. 929-2000, 2000.
    2. 2)
      • 55. Kasztenny, B., Campbell, B., Mazereeuw, J.: ‘Phase selection for single-pole tripping – weak infeed conditions and cross country faults’. 27th Annual Western Protective Relay Conf., Spokane, WA, USA, October 2000.
    3. 3)
      • 39. Calero, F.: ‘Mutual impedance in parallel lines – protective relaying and fault location considerations’. 34th Annual Western Protective Relay Conf., Spokane, WA, USA, 2007.
    4. 4)
      • 7. Sanaye-Pasand, M., Malik, O.: ‘High speed transmission line directional protection evaluation using field data’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 851856.
    5. 5)
      • 4. Casagrande, E., Woon, W.L., Zeineldin, H.H., et al: ‘Data mining approach to fault detection for isolated inverter-based microgrids’, IET Gener. Transm. Distrib., 2013, 7, (7), pp. 745754.
    6. 6)
      • 44. Voloh, I., Finney, D., Adamiak, M.: ‘Impact of frequency deviations protection functions’. 62nd Annual Conf. Protective Relay Engineers, Austin, TX, USA, 30 March – 2 April 2009.
    7. 7)
      • 26. Hooshyar, A., Azzouz, M.A., El-Saadany, E.F.: ‘Distance protection of lines emanating from full-scale converter-interfaced renewable energy power plants – part I: problem statement’, IEEE Trans. Power Deliv., 2015, 30, (4), pp. 17701780.
    8. 8)
      • 47. Hooshyar, A., Iravani, R.: ‘A new directional element for microgrid protection’, IEEE Trans. Smart Grid, 2017, pp. 11, DOI: 10.1109/TSG.2017.2727400.
    9. 9)
      • 51. Muda, H., Jena, P.: ‘Sequence currents based adaptive protection approach for DNs with distributed energy resources’, IET Gener. Transm. Distrib., 2017, 11, (1), pp. 154165.
    10. 10)
      • 36. IEEE Std. 1459-2010: ‘IEEE standard definitions for the measurement of electric power quantities under sinusoidal, non-sinusoidal, balanced, or unbalanced conditions’, 2010.
    11. 11)
      • 24. Gao, H.P., Crossley, A.: ‘Design and evaluation of a directional algorithm for transmission-line protection based on positive-sequence fault components’, IEE Proc., IET Gener. Transm. Distrib., 2006, 153, (6), pp. 711718.
    12. 12)
      • 13. Eissa, M., Mahfouz, M.: ‘New high-voltage directional and phase selection protection technique based on real power system data’, IET Gener. Transm. Distrib., 2012, 6, (11), pp. 10751085.
    13. 13)
      • 14. Elmore, W.A.: ‘Protective relaying: theory and applications’ (Marcel Dekker, New York, NY, USA2004, 2nd edn.).
    14. 14)
      • 53. IEEE Std. 1159-2009: ‘IEEE recommended practice for monitoring electric power quality’, 2009.
    15. 15)
      • 15. Ashtiani, H.J., Samet, H., Ghanbari, T.: ‘Simple current-based algorithm for directional relays’, IET Gener. Transm. Distrib., 2017, 11, (17), pp. 42274237.
    16. 16)
      • 9. Cheney, R.M., Thorne, J.T., Hataway, G.: ‘Distribution single-phase tripping and reclosing: overcoming obstacles with programmable recloser controls’. 2009 Power Systems Conference, Clemson, SC, USA, March 2009.
    17. 17)
      • 46. Gruzs, T.M.: ‘A survey of neutral currents in three-phase computer power systems’, IEEE Trans. Ind. Appl., 1990, 26, (4), pp. 719725.
    18. 18)
      • 30. Short, T.A.: ‘Electric power distribution handbook’ (CRC Press, Boca Raton, FL, USA, 2004).
    19. 19)
      • 1. Blackburn, J.L., Domin, T.J.: ‘Protective relaying: principles and applications’ (CRC Press, Boca Raton, FL, USA, 2014, 4th edn.).
    20. 20)
      • 32. Kumar, A., Indra, V., Kumar, S.: ‘Design and implementation of single phase inverter without transformer for PV applications’, IET Renew. Power Gener., 2017, 12, (5), pp. 547554.
    21. 21)
      • 37. De Léon, F., Cohen, J.: ‘AC power theory from Poynting theorem: accurate identification of instantaneous power components in nonlinear-switched circuits’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 21042112.
    22. 22)
      • 33. Calzo, G.L., Lidozzi, A., Solero, L., et al: ‘LC filter design for on-grid and off-grid distributed generating units’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 16391650.
    23. 23)
      • 27. Wang, F., Duarte, J., Hendrix, M.: ‘Design and analysis of active power control strategies for distributed generation inverters under unbalanced grid faults’, IET Gener. Transm. Distrib., 2010, 4, (8), pp. 905916.
    24. 24)
      • 12. Zadeh, M.D., Sidhu, T., Klimek, A.: ‘Suitability analysis of practical directional algorithms for use in directional comparison bus protection based on IEC61850 process bus’, IET Gener. Transm. Distrib., 2011, 5, (2), pp. 199208.
    25. 25)
      • 50. Mishra, M., Rout, P.K.: ‘Detection and classification of micro-grid faults based on HHT and machine learning techniques’, IET Gener. Transm. Distrib., 2018, 12, (2), pp. 388397.
    26. 26)
      • 52. Piesciorovsky, E.C., Schulz, N.N.: ‘Fuse relay adaptive overcurrent protection scheme for microgrid with distributed generators’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 540549.
    27. 27)
      • 45. Littler, G.: ‘The production of residual currents due to harmonic loading’, IEE Proc. C (Gener. Transm. Distrib.), 1985, 132, (4), pp. 195201.
    28. 28)
      • 40. Mahamedi, B., Zhu, J.G.: ‘A novel approach to detect symmetrical faults occurring during power swings by using frequency components of instantaneous three-phase active power’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 13681376.
    29. 29)
      • 6. McLaren, P., Swift, G., Zhang, Z., et al: ‘A new directional element for numerical distance relays’, IEEE Trans. Power Deliv., 1995, 10, (2), pp. 666675.
    30. 30)
      • 22. Wang, D., Gao, H., Zou, G., et al: ‘Ultra-high-speed travelling wave directional protection based on electronic transformers’, IET Gener. Transm. Distrib., 2017, 11, (8), pp. 20652074.
    31. 31)
      • 35. Divan, D.M.: ‘Inverter topologies and control techniques for sinusoidal output power supplies’. Sixth Annual Applied Power Electronics Conf. Exposition, Dallas, TX, USA, March 1991.
    32. 32)
      • 42. Cho, Y.-S., Lee, C.-K., Jang, G., et al: ‘An innovative decaying DC component estimation algorithm for digital relaying’, IEEE Trans. Power Deliv., 2009, 24, (1), pp. 7378.
    33. 33)
      • 19. He, Z., Liu, X., Li, X., et al: ‘A novel traveling-wave directional relay based on apparent surge impedance’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 11531161.
    34. 34)
      • 17. Ukil, A., Deck, B., Shah, V.H.: ‘Current-only directional overcurrent protection for distribution automation: challenges and solutions’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 16871694.
    35. 35)
      • 49. Timbus, A., Liserre, M., Teodorescu, R., et al: ‘Evaluation of current controllers for distributed power generation systems’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 654664.
    36. 36)
      • 38. Saadat, H.: ‘Power system analysis’ (McGraw-Hill, Boston, MA, USA, 1999).
    37. 37)
      • 5. IEEE Std. 1547.2-2008: ‘IEEE application guide for IEEE Std. 1547, IEEE standard for interconnecting distributed resources with electric power systems’, 2009, pp. 1217.
    38. 38)
      • 2. Hooshyar, A., Iravani, R.: ‘Microgrid protection’, Proc. IEEE, 2017, 105, (7), pp. 13321353.
    39. 39)
      • 11. Yao, Z.: ‘Fundamental phasor calculation with short delay’, IEEE Trans. Power Deliv., 2008, 23, (3), pp. 12801287.
    40. 40)
      • 28. Shen, C., Yin, X.: ‘Fault analysis of inverter-interfaced distributed generators with different control schemes’, IEEE Trans. Power Deliv., 2018, 33, (3), pp. 12231235.
    41. 41)
      • 3. Pan, Y., Voloh, I., Ren, W.: ‘Protection issues and solutions for protecting feeder with distributed generation’. 66th Annual Conf. Protective Relay Engineers, College Station, TX, USA, April 2013.
    42. 42)
      • 10. Baldwin, T., Renovich, F., Saunders, L.F.: ‘Directional ground-fault indicator for high-resistance grounded systems’, IEEE Trans. Ind. Appl., 2003, 39, (2), pp. 325332.
    43. 43)
      • 43. Benmouyal, G.: ‘An adaptive sampling-interval generator for digital relaying’, IEEE Trans. Power Deliv., 1989, 4, (3), pp. 16021609.
    44. 44)
      • 34. Laaksonen, H.J.: ‘Protection principles for future microgrids’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 29102918.
    45. 45)
      • 54. Kingrey, L.J., Painter, R.D., Locker, A.S.: ‘Applying high-resistance neutral grounding in medium-voltage systems’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 12201231.
    46. 46)
      • 23. Gu, B., Tan, J., Wei, H.: ‘High speed directional relaying algorithm based on the fundamental frequency positive sequence superimposed components’, IET Gener. Transm. Distrib., 2014, 8, (7), pp. 12111220.
    47. 47)
      • 56. Chen, S., Tai, N., Fan, C., et al: ‘Sequence-component-based current differential protection for transmission lines connected with IIGs’, IET Gener. Transm. Distrib., 2018, 12, (12), pp. 30863096.
    48. 48)
      • 29. Guo, W.-M., Mu, L.-H., Zhang, X.: ‘Fault models of inverter-interfaced distributed generators within a low-voltage microgrid’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 453461.
    49. 49)
      • 41. Mahari, A., Sanaye-Pasand, M., Hashemi, S.M.: ‘Adaptive phasor estimation algorithm to enhance numerical distance protection’, IET Gener. Trans. Distrib., 2016, 11, (5), pp. 11701178.
    50. 50)
      • 25. Margossian, H., Deconinck, G., Sachau, J.: ‘Distribution network protection considering grid code requirements for distributed generation’, IET Gener. Transm. Distrib., 2015, 9, (12), pp. 13771381.
    51. 51)
      • 48. Sefa, I., Altin, N., Ozdemir, S., et al: ‘Fuzzy PI controlled inverter for grid interactive renewable energy systems’, IET Renew. Power Gener., 2015, 9, (7), pp. 729738.
    52. 52)
      • 8. Minnaar, U., Nicolls, F., Gaunt, C.: ‘Automating transmission-line fault root cause analysis’, IEEE Trans. Power Deliv., 2016, 31, (4), pp. 16921700.
    53. 53)
      • 16. Le, T.D., Petit, M.: ‘Directional relays without voltage sensors for distribution networks’, IET Gener. Transm. Distrib., 2014, 8, (12), pp. 20742082.
    54. 54)
      • 21. Pradhan, A., Routray, A., Gudipalli, S.M.: ‘Fault direction estimation in radial distribution system using phase change in sequence current’, IEEE Trans. Power Deliv., 2007, 22, (4), pp. 20652071.
    55. 55)
      • 20. Dong, X., Luo, S., Shi, S., et al: ‘Implementation and application of practical traveling-wave-based directional protection in UHV transmission lines’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 294302.
    56. 56)
      • 18. Perera, N., Rajapakse, A.: ‘Design and hardware implementation of a modular transient directional protection scheme using current signals’, IET Gener. Transm. Distrib., 2012, 6, (6), pp. 554562.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5469
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5469
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address