http://iet.metastore.ingenta.com
1887

Protection of inverter-based microgrids from ground faults by an innovative directional element

Protection of inverter-based microgrids from ground faults by an innovative directional element

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The complicated response of inverter-interfaced distributed generators (IIDG) to faults has been reported, which severely affects all parts of relaying, i.e. fault sensing and polarisation, and faulted phase selection. Given this, the root causes of difficulties in dealing with the protection of inverter-based microgrids are explained. Then, the study describes a directional element using unique features of zero-sequence components that retains satisfactory performance even in IIDG-based microgrids. The zero-sequence component is the only sequence component that can be calculated in the time domain without time delay and thus can cause less delay in the outcome of protective schemes compared with the other two sequences. With this, instantaneous zero-sequence power is defined and one term derived from it, zero-sequence reactive power, is utilised to polarise ground faults. It is proven that the zero-sequence reactive power is negative for forwarding ground faults and positive for reverse ground faults. An interesting feature is that the zero-sequence reactive power is calculated by averaging a new quantity in the time domain over half a power cycle. Hence, the time delay is half that of the conventional phasor-based methods. A sample microgrid is simulated in MATLAB/SIMULINK to evaluate the directional element and the results demonstrate the improvements.

References

    1. 1)
      • 1. Blackburn, J.L., Domin, T.J.: ‘Protective relaying: principles and applications’ (CRC Press, Boca Raton, FL, USA, 2014, 4th edn.).
    2. 2)
      • 2. Hooshyar, A., Iravani, R.: ‘Microgrid protection’, Proc. IEEE, 2017, 105, (7), pp. 13321353.
    3. 3)
      • 3. Pan, Y., Voloh, I., Ren, W.: ‘Protection issues and solutions for protecting feeder with distributed generation’. 66th Annual Conf. Protective Relay Engineers, College Station, TX, USA, April 2013.
    4. 4)
      • 4. Casagrande, E., Woon, W.L., Zeineldin, H.H., et al: ‘Data mining approach to fault detection for isolated inverter-based microgrids’, IET Gener. Transm. Distrib., 2013, 7, (7), pp. 745754.
    5. 5)
      • 5. IEEE Std. 1547.2-2008: ‘IEEE application guide for IEEE Std. 1547, IEEE standard for interconnecting distributed resources with electric power systems’, 2009, pp. 1217.
    6. 6)
      • 6. McLaren, P., Swift, G., Zhang, Z., et al: ‘A new directional element for numerical distance relays’, IEEE Trans. Power Deliv., 1995, 10, (2), pp. 666675.
    7. 7)
      • 7. Sanaye-Pasand, M., Malik, O.: ‘High speed transmission line directional protection evaluation using field data’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 851856.
    8. 8)
      • 8. Minnaar, U., Nicolls, F., Gaunt, C.: ‘Automating transmission-line fault root cause analysis’, IEEE Trans. Power Deliv., 2016, 31, (4), pp. 16921700.
    9. 9)
      • 9. Cheney, R.M., Thorne, J.T., Hataway, G.: ‘Distribution single-phase tripping and reclosing: overcoming obstacles with programmable recloser controls’. 2009 Power Systems Conference, Clemson, SC, USA, March 2009.
    10. 10)
      • 10. Baldwin, T., Renovich, F., Saunders, L.F.: ‘Directional ground-fault indicator for high-resistance grounded systems’, IEEE Trans. Ind. Appl., 2003, 39, (2), pp. 325332.
    11. 11)
      • 11. Yao, Z.: ‘Fundamental phasor calculation with short delay’, IEEE Trans. Power Deliv., 2008, 23, (3), pp. 12801287.
    12. 12)
      • 12. Zadeh, M.D., Sidhu, T., Klimek, A.: ‘Suitability analysis of practical directional algorithms for use in directional comparison bus protection based on IEC61850 process bus’, IET Gener. Transm. Distrib., 2011, 5, (2), pp. 199208.
    13. 13)
      • 13. Eissa, M., Mahfouz, M.: ‘New high-voltage directional and phase selection protection technique based on real power system data’, IET Gener. Transm. Distrib., 2012, 6, (11), pp. 10751085.
    14. 14)
      • 14. Elmore, W.A.: ‘Protective relaying: theory and applications’ (Marcel Dekker, New York, NY, USA2004, 2nd edn.).
    15. 15)
      • 15. Ashtiani, H.J., Samet, H., Ghanbari, T.: ‘Simple current-based algorithm for directional relays’, IET Gener. Transm. Distrib., 2017, 11, (17), pp. 42274237.
    16. 16)
      • 16. Le, T.D., Petit, M.: ‘Directional relays without voltage sensors for distribution networks’, IET Gener. Transm. Distrib., 2014, 8, (12), pp. 20742082.
    17. 17)
      • 17. Ukil, A., Deck, B., Shah, V.H.: ‘Current-only directional overcurrent protection for distribution automation: challenges and solutions’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 16871694.
    18. 18)
      • 18. Perera, N., Rajapakse, A.: ‘Design and hardware implementation of a modular transient directional protection scheme using current signals’, IET Gener. Transm. Distrib., 2012, 6, (6), pp. 554562.
    19. 19)
      • 19. He, Z., Liu, X., Li, X., et al: ‘A novel traveling-wave directional relay based on apparent surge impedance’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 11531161.
    20. 20)
      • 20. Dong, X., Luo, S., Shi, S., et al: ‘Implementation and application of practical traveling-wave-based directional protection in UHV transmission lines’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 294302.
    21. 21)
      • 21. Pradhan, A., Routray, A., Gudipalli, S.M.: ‘Fault direction estimation in radial distribution system using phase change in sequence current’, IEEE Trans. Power Deliv., 2007, 22, (4), pp. 20652071.
    22. 22)
      • 22. Wang, D., Gao, H., Zou, G., et al: ‘Ultra-high-speed travelling wave directional protection based on electronic transformers’, IET Gener. Transm. Distrib., 2017, 11, (8), pp. 20652074.
    23. 23)
      • 23. Gu, B., Tan, J., Wei, H.: ‘High speed directional relaying algorithm based on the fundamental frequency positive sequence superimposed components’, IET Gener. Transm. Distrib., 2014, 8, (7), pp. 12111220.
    24. 24)
      • 24. Gao, H.P., Crossley, A.: ‘Design and evaluation of a directional algorithm for transmission-line protection based on positive-sequence fault components’, IEE Proc., IET Gener. Transm. Distrib., 2006, 153, (6), pp. 711718.
    25. 25)
      • 25. Margossian, H., Deconinck, G., Sachau, J.: ‘Distribution network protection considering grid code requirements for distributed generation’, IET Gener. Transm. Distrib., 2015, 9, (12), pp. 13771381.
    26. 26)
      • 26. Hooshyar, A., Azzouz, M.A., El-Saadany, E.F.: ‘Distance protection of lines emanating from full-scale converter-interfaced renewable energy power plants – part I: problem statement’, IEEE Trans. Power Deliv., 2015, 30, (4), pp. 17701780.
    27. 27)
      • 27. Wang, F., Duarte, J., Hendrix, M.: ‘Design and analysis of active power control strategies for distributed generation inverters under unbalanced grid faults’, IET Gener. Transm. Distrib., 2010, 4, (8), pp. 905916.
    28. 28)
      • 28. Shen, C., Yin, X.: ‘Fault analysis of inverter-interfaced distributed generators with different control schemes’, IEEE Trans. Power Deliv., 2018, 33, (3), pp. 12231235.
    29. 29)
      • 29. Guo, W.-M., Mu, L.-H., Zhang, X.: ‘Fault models of inverter-interfaced distributed generators within a low-voltage microgrid’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 453461.
    30. 30)
      • 30. Short, T.A.: ‘Electric power distribution handbook’ (CRC Press, Boca Raton, FL, USA, 2004).
    31. 31)
      • 31. IEEE recommended practice for utility interface of photovoltaic (PV) systems’, IEEE Std. 929-2000, 2000.
    32. 32)
      • 32. Kumar, A., Indra, V., Kumar, S.: ‘Design and implementation of single phase inverter without transformer for PV applications’, IET Renew. Power Gener., 2017, 12, (5), pp. 547554.
    33. 33)
      • 33. Calzo, G.L., Lidozzi, A., Solero, L., et al: ‘LC filter design for on-grid and off-grid distributed generating units’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 16391650.
    34. 34)
      • 34. Laaksonen, H.J.: ‘Protection principles for future microgrids’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 29102918.
    35. 35)
      • 35. Divan, D.M.: ‘Inverter topologies and control techniques for sinusoidal output power supplies’. Sixth Annual Applied Power Electronics Conf. Exposition, Dallas, TX, USA, March 1991.
    36. 36)
      • 36. IEEE Std. 1459-2010: ‘IEEE standard definitions for the measurement of electric power quantities under sinusoidal, non-sinusoidal, balanced, or unbalanced conditions’, 2010.
    37. 37)
      • 37. De Léon, F., Cohen, J.: ‘AC power theory from Poynting theorem: accurate identification of instantaneous power components in nonlinear-switched circuits’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 21042112.
    38. 38)
      • 38. Saadat, H.: ‘Power system analysis’ (McGraw-Hill, Boston, MA, USA, 1999).
    39. 39)
      • 39. Calero, F.: ‘Mutual impedance in parallel lines – protective relaying and fault location considerations’. 34th Annual Western Protective Relay Conf., Spokane, WA, USA, 2007.
    40. 40)
      • 40. Mahamedi, B., Zhu, J.G.: ‘A novel approach to detect symmetrical faults occurring during power swings by using frequency components of instantaneous three-phase active power’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 13681376.
    41. 41)
      • 41. Mahari, A., Sanaye-Pasand, M., Hashemi, S.M.: ‘Adaptive phasor estimation algorithm to enhance numerical distance protection’, IET Gener. Trans. Distrib., 2016, 11, (5), pp. 11701178.
    42. 42)
      • 42. Cho, Y.-S., Lee, C.-K., Jang, G., et al: ‘An innovative decaying DC component estimation algorithm for digital relaying’, IEEE Trans. Power Deliv., 2009, 24, (1), pp. 7378.
    43. 43)
      • 43. Benmouyal, G.: ‘An adaptive sampling-interval generator for digital relaying’, IEEE Trans. Power Deliv., 1989, 4, (3), pp. 16021609.
    44. 44)
      • 44. Voloh, I., Finney, D., Adamiak, M.: ‘Impact of frequency deviations protection functions’. 62nd Annual Conf. Protective Relay Engineers, Austin, TX, USA, 30 March – 2 April 2009.
    45. 45)
      • 45. Littler, G.: ‘The production of residual currents due to harmonic loading’, IEE Proc. C (Gener. Transm. Distrib.), 1985, 132, (4), pp. 195201.
    46. 46)
      • 46. Gruzs, T.M.: ‘A survey of neutral currents in three-phase computer power systems’, IEEE Trans. Ind. Appl., 1990, 26, (4), pp. 719725.
    47. 47)
      • 47. Hooshyar, A., Iravani, R.: ‘A new directional element for microgrid protection’, IEEE Trans. Smart Grid, 2017, pp. 11, DOI: 10.1109/TSG.2017.2727400.
    48. 48)
      • 48. Sefa, I., Altin, N., Ozdemir, S., et al: ‘Fuzzy PI controlled inverter for grid interactive renewable energy systems’, IET Renew. Power Gener., 2015, 9, (7), pp. 729738.
    49. 49)
      • 49. Timbus, A., Liserre, M., Teodorescu, R., et al: ‘Evaluation of current controllers for distributed power generation systems’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 654664.
    50. 50)
      • 50. Mishra, M., Rout, P.K.: ‘Detection and classification of micro-grid faults based on HHT and machine learning techniques’, IET Gener. Transm. Distrib., 2018, 12, (2), pp. 388397.
    51. 51)
      • 51. Muda, H., Jena, P.: ‘Sequence currents based adaptive protection approach for DNs with distributed energy resources’, IET Gener. Transm. Distrib., 2017, 11, (1), pp. 154165.
    52. 52)
      • 52. Piesciorovsky, E.C., Schulz, N.N.: ‘Fuse relay adaptive overcurrent protection scheme for microgrid with distributed generators’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 540549.
    53. 53)
      • 53. IEEE Std. 1159-2009: ‘IEEE recommended practice for monitoring electric power quality’, 2009.
    54. 54)
      • 54. Kingrey, L.J., Painter, R.D., Locker, A.S.: ‘Applying high-resistance neutral grounding in medium-voltage systems’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 12201231.
    55. 55)
      • 55. Kasztenny, B., Campbell, B., Mazereeuw, J.: ‘Phase selection for single-pole tripping – weak infeed conditions and cross country faults’. 27th Annual Western Protective Relay Conf., Spokane, WA, USA, October 2000.
    56. 56)
      • 56. Chen, S., Tai, N., Fan, C., et al: ‘Sequence-component-based current differential protection for transmission lines connected with IIGs’, IET Gener. Transm. Distrib., 2018, 12, (12), pp. 30863096.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5469
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5469
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address