access icon free Voltage stability constrained line-wise optimal power flow

The purpose of optimal power flow (OPF) is to optimise an objective function subject to a set of operating constraints. It remains an active research area because of using the bus-wise power balance equations, which leads to a non-linear solution space, resulting in OPF yielding local optimal solutions, thereby causing significant economic loss. In this study, first, a new line-wise OPF (LWOPF) formulation is proposed. Thereafter, a maximum loadability factor, as a voltage collapse indicator, is derived and combined with LWOPF constraints to form a voltage stability constrained LWOPF (VSCLWOPF) model. As the line-wise power balance equations are based upon the square of voltage magnitudes, it results in significant improvement in the solution space and lower-order terms in all computational steps. The LWOPF and VSCLWOPF formulations, are solved using non-linear optimisation technique, tested on several benchmark and real power systems. Results show that the proposed LWOPF is accurate, provides monotonic convergence, and scales well for large systems. It provides a better solution and is consistently faster, up to twice the speed of MATPOWER, due to reduced computational needs. Results of VSCLWOPF show that, for the same voltage stability level, the solution costs less than that obtained by classical bus-wise OPF.

Inspec keywords: optimisation; load flow; power system dynamic stability; power markets; power system stability

Other keywords: line-wise power balance equations; optimal power flow; bus-wise power balance equations; power system; simple line-wise OPF; nonlinear solution space; operating constraints; voltage stability constrained line-wise; bus voltage magnitudes

Subjects: Optimisation techniques; Power system management, operation and economics; Power system control; Optimisation techniques

References

    1. 1)
      • 17. Madrigal, M., Quintana, A.: ‘Semidefinite programming relaxations for {0, 1}-power dispatch problems’. 1999 IEEE Power Engineering Society Summer Meeting, Edmonton, Alta, Canada, 1999, vol. 2, pp. 697702.
    2. 2)
      • 25. Bose, S., Low, S.H., Teeraratkul, T., et al: ‘Equivalent relaxations of optimal power flow’, IEEE Trans. Autom. Control, 2015, 60, (1), pp. 729742.
    3. 3)
      • 10. Aoki, K., Nishikori, A., Yokoyama, R.: ‘Constrained load flow using recursive quadratic programming’, IEEE Trans. Power Syst., 1987, 2, (1), pp. 816.
    4. 4)
      • 28. Hermann, A., Wu, Q., Huang, S., et al: ‘Convex relaxation of optimal power flow in distribution feeders with embedded solar power’, Energy Procedia, 2016, 100, pp. 4349.
    5. 5)
      • 41. Zabaiou, T., Dessaint, L.A., Kamwa, I.: ‘Preventive control approach for voltage stability improvement using voltage stability constrained optimal power flow based on static line voltage stability indices’, IET Gener. Trans. Distrib., 2014, 8, (5), pp. 924934.
    6. 6)
      • 1. Cain, M.B., O'Neill, R.P., Castillo, A.: ‘History of optimal power flow and formulations (OPF Paper 1)’. Technical report, US FERC2012.
    7. 7)
      • 27. Jabr, R.A., Džafić, I.: ‘A compensation-based conic OPF for weakly meshed networks’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 41674168.
    8. 8)
      • 42. BCui, B., Sun, X.A.: ‘A New voltage stability-constrained optimal power flow model: sufficient condition, SOCP representation, and relaxation’, IEEE Trans. Power Syst., 2018, 33, (5), pp. 50925102.
    9. 9)
      • 26. Molzahn, D.K., Hiskens, I.A.: ‘Convex relaxations of optimal power flow problems: an illustrative example’, IEEE Trans. Circuits Syst. I: Regular Papers, 2016, 63, (5), pp. 650660.
    10. 10)
      • 33. Roald, L., Andersson, G., Misra, S., et al: ‘Optimal power flow with wind power control and limited expected risk of overloads’. Power Systems Computation Conf. (PSCC), 2016, pp. 17.
    11. 11)
      • 20. Jabr, R.A.: ‘Radial distribution load flow using conic programming’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 14581459.
    12. 12)
      • 15. Bakirtzis, A.G., Biskas, P.N., Zoumas, C.E., et al: ‘Optimal power flow by enhanced genetic algorithm’, IEEE Trans. Power Syst., 2002, 17, (2), pp. 229236.
    13. 13)
      • 46. Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J.: ‘MATPOWER: steady-state operations, planning and analysis tools for power systems research and education’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 1219.
    14. 14)
      • 43. Amini, M.H., Jaddivada, R., Mishra, S., et al: ‘Distributed security constrained economic dispatch’. 2015 IEEE Innovative Smart Grid Technologies – Asia (ISGT ASIA), Bangkok, Thailand, 2015, pp. 16.
    15. 15)
      • 21. Bai, X., Wei, H., Fujisawa, K., et al: ‘Semidefinite programming for optimal power flow problems’, Int. J. Electr. Power Energy Syst., 2008, 30, (6-7), pp. 383392.
    16. 16)
      • 14. Abido, M.: ‘Optimal power flow using particle swarm optimization’, Int. J. Electr. Power Energy Syst., 2002, 24, (7), pp. 563571.
    17. 17)
      • 45. Mohamed, A.A., Venkatesh, B.: ‘Line-wise power flow and voltage collapse’, IEEE Trans. Power Syst., 2018, 33, (4), pp. 37683778.
    18. 18)
      • 2. Carpentier, J.: ‘Contribution a.’l'etude du dispatching economique’, Bulletin de la Societe Francaise des Electriciens, August 1962, 3, pp. 431447.
    19. 19)
      • 12. Lai, L.L., Ma, J., Yokoyama, R., et al: ‘Improved genetic algorithms for optimal power flow under both normal and contingent operation states’, J. Electr. Power Energy Syst., 1997, 19, (5), pp. 287292.
    20. 20)
      • 29. Huang, S., Wu, Q., Wang, J., et al: ‘A sufficient condition on convex relaxation of AC optimal power flow in distribution networks’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 13591368.
    21. 21)
      • 30. Li, Q., Vittal, V.: ‘Non-iterative enhanced SDP relaxations for optimal scheduling of distributed energy storage in distribution systems’, IEEE Trans. Power Syst., 2017, 32, (3), pp. 17211732.
    22. 22)
      • 32. Gill, S., Kockar, I., Ault, G.W.: ‘Dynamic optimal power flow for active distribution networks’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 121131.
    23. 23)
      • 39. Milano, F., Canizares, C.A., Conejo, A.J.: ‘Sensitivity-based security-constrained OPF market clearing model’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 20512060.
    24. 24)
      • 11. Contaxis, G., Delkis, C., Korres, G.: ‘Decoupled optimal load flow using linear or quadratic programming’, IEEE Trans. Power Syst., 1986, 1, (2), pp. 17.
    25. 25)
      • 19. Jabr, R.A.: ‘Modeling network losses using quadratic cones’, IEEE Trans. Power Syst., 2005, 20, pp. 505506.
    26. 26)
      • 23. Molzahn, D.K., Lesieutre, B.C., DeMarco, C.L.: ‘A sufficient condition for global optimality of solutions to the optimal power flow problem’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 978979.
    27. 27)
      • 8. Burchett, R., Happ, H., Wirgau, K.: ‘Large scale optimal power flow’, IEEE Trans. Power Appar. Syst., 1982, PAS-101, (10), pp. 37223732.
    28. 28)
      • 31. Kocuk, B., Dey, S.S., Sun, X.A.: ‘Inexactness of SDP relaxation and valid inequalities for optimal power flow’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 642651.
    29. 29)
      • 40. Chavez-Lugo, M., Fuerte-Esquivel, C.R., Canizares, C.A., et al: ‘Practical security boundary-constrained DC optimal power flow for electricity markets’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 33583368.
    30. 30)
      • 35. Rimez, J.: ‘OPF modeling of hybrid AC/DC systems’, in Van Hertem, D., Gomez-Bellmunt, O., Liang, J., (Eds.): ‘HVDC grids: For offshore and supergrid of the future’ (D. Wiley, USA, 2016), pp. 293313.
    31. 31)
      • 36. Todescato, M., Simpson-Porco, J.W., Dörfler, F., et al: ‘Online distributed voltage stress minimization by optimal feedback reactive power control’, IEEE Trans. Control Netw. Syst., 2018, 5, (3), pp. 14671478.
    32. 32)
      • 34. Kargarian, A., Mohammadi, J., Guo, J., et al: ‘Toward distributed/decentralized DC optimal power flow implementation in future electric power systems’, IEEE Trans. Smart Grid, 2018, 9, (4), pp. 25742594.
    33. 33)
      • 37. Rosehart, W., Canizares, C., Quintana, V.: ‘Optimal power flow incorporating voltage collapse constraints’. 1999 IEEE Power Engineering Society Summer Meeting Conf. Proc. (Cat. No. 99CH36364), Edmonton, Alta., Canada, 1999, vol. 2, pp. 820825.
    34. 34)
      • 44. Bahrami, S., Wong, V.W.S.: ‘Security-constrained unit commitment for AC–DC grids with generation and load uncertainty’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 27172732.
    35. 35)
      • 24. Gan, L., Li, N., Topcu, U., et al: ‘Exact convex relaxation of optimal power flow in radial networks’, IEEE Trans. Autom. Control, 2015, 60, (1), pp. 7287.
    36. 36)
      • 18. Fuentes-Loyola, R., Quintana, V.H.: ‘Medium-term hydrothermal coordination by semidefinite programming’, IEEE Trans. Power Syst., 2003, 18, (4), pp. 15151522.
    37. 37)
      • 5. Sasson, A.M., Viloria, F., Aboytes, F.: ‘Optimal load flow solution using the Hessian matrix’, IEEE Trans. Power Appar. Syst., 1973, PAS-92, (1), pp. 3141.
    38. 38)
      • 6. Rashed, A., Kelly, D.: ‘Optimal load flow solution using Lagrangian multipliers and the Hessian matrix’, IEEE Trans. Power Appar. Syst., 1974, PAS-93, (5), pp. 12921297.
    39. 39)
      • 3. El-abiad, A.H., Jaimes, F.J.: ‘A method for optimum scheduling of power and voltage magnitude’, IEEE Trans. Power Appar. Syst., 1969, PAS-88, (4), pp. 413422.
    40. 40)
      • 7. Alsac, O., Stott, B.: ‘Optimal load flow with steady-state security’, IEEE Trans. Power Appar. Syst., 1974, PAS-93, (3), pp. 745751.
    41. 41)
      • 9. Burchett, R., Happ, H., Vierath, D.: ‘Quadratically convergent optimal power flow’, IEEE Trans. Power Appar. Syst., 1984, PAS-103, (11), pp. 32673275.
    42. 42)
      • 22. Lavaei, J., Low, S.H.: ‘Zero duality gap in optimal power flow problem’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 92107.
    43. 43)
      • 38. Canizares, C.A., Rosehart, W., Berizzi, A., et al: ‘Comparison of voltage security constrained optimal power flow techniques’. 2001 Proc. IEEE Power Engineering Society Summer Meeting, Vancouver, BC, Canada, July 2001, (3), pp. 16801685.
    44. 44)
      • 13. Nguyen, T.T.: ‘Neural network optimal-power-flow’. 1997 Fourth Int. Conf. on Advances in Power System Control, Operation and Management, APSCOM-97 (Conf. Publ. No. 450), Hong Kong, 1997, vol. 1, pp. 266271.
    45. 45)
      • 16. Sousa, T., Soares, J., Vale, Z.A., et al: ‘Simulated annealing metaheuristic to solve the optimal power flow’. 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 2011, pp. 18.
    46. 46)
      • 4. Dommel, H.W., Tinney, W.F.: ‘Optimal power flow solutions’, IEEE Trans. Power Appar. Syst., 1968, PAS-87, (10), pp. 18661876.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5452
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5452
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading