Incorporating energy storage into probabilistic security-constrained unit commitment

Incorporating energy storage into probabilistic security-constrained unit commitment

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

System operators still rely on deterministic criteria such as the (i.e. the system would be able to withstand the outage of any single component without any load shedding) to hedge the system against contingencies. While simple and practical, this criterion miscalculates the actual amount of reserve required since it ignores the probability of contingency occurrence. Therefore, this criterion may lead to suboptimal reserve procurement and economic performance of the system. This study presents a multiperiod probabilistic security-constrained unit commitment (UC) model that includes the probabilities of generation and transmission contingencies for optimal reserve sizing, sourcing, allocation, and timing. The ability of energy storage systems (ESS) to provide contingency reserve is explicitly modelled. Benders’ decomposition and linearisation techniques are applied to solve the proposed probabilistic UC, which would be intractable otherwise. The impact of ESS on the contingency reserve procurement and deployment in post-contingency states are analysed on a modified version of the IEEE One-Area Reliability Test System.


    1. 1)
      • 1. Ortega-Vazquez, M.A., Kirschen, D.S.: ‘Optimizing the spinning reserve requirements using a cost/benefit analysis’, IEEE Trans. Power Syst., 2007, 22, pp. 2433.
    2. 2)
      • 2. Fernández-Blanco, R., Dvorkin, Y., Ortega-Vazquez, M.A.: ‘Probabilistic security-constrained unit commitment with generation and transmission contingencies’, IEEE Trans. Power Syst., 2017, 32, pp. 228239.
    3. 3)
      • 3. Wen, Y., Guo, C., Pandžić, H., et al: ‘Enhanced security-constrained unit commitment with emerging utility-scale energy storage’, IEEE Trans. Power Syst., 2016, 31, pp. 652662.
    4. 4)
      • 4. Wen, Y., Li, W., Huang, G., et al: ‘Frequency dynamics constrained unit commitment with battery energy storage’, IEEE Trans. Power Syst., 2016, 31, pp. 51155125.
    5. 5)
      • 5. Wu, H., Shahidehpour, M., Alabdulwahab, A., et al: ‘Thermal generation flexibility with ramping costs and hourly demand response in stochastic security-constrained scheduling of variable energy sources’, IEEE Trans. Power Syst., 2015, 30, pp. 29552964.
    6. 6)
      • 6. Kamalinia, S., Wu, L., Shahidehpour, M.: ‘Stochastic midterm coordination of hydro and natural gas flexibilities for wind energy integration’, IEEE Trans. Sust. Energy, 2014, 5, pp. 10701079.
    7. 7)
      • 7. Li, N., Hedman, K.W.: ‘Economic assessment of energy storage in systems with high levels of renewable resources’, IEEE Trans. Sust. Energy, 2015, 6, pp. 11031111.
    8. 8)
      • 8. Pandžić, H., Wang, Y., Qiu, T., et al: ‘Near-optimal method for siting and sizing of distributed storage in a transmission network’, IEEE Trans. Power Syst., 2015, 30, pp. 22882300.
    9. 9)
      • 9. Li, N., Uçkun, C., Constantinescu, E.M., et al: ‘Flexible operation of batteries in power system scheduling with renewable energy’, IEEE Trans. Sust. Energy, 2016, 7, pp. 685696.
    10. 10)
      • 10. Makarov, Y.V., Du, P., Kintner-Meyer, M.C.W., et al: ‘Sizing energy storage to accommodate high penetration of variable energy resources’, IEEE Trans. Sust. Energy, 2012, 3, pp. 3440.
    11. 11)
      • 11. Gayme, D., Topcu, U.: ‘Optimal power flow with large-scale storage integration’, IEEE Trans. Power Syst., 2013, 28, pp. 709717.
    12. 12)
      • 12. Vargas, L.S., Bustos-Turu, G., Larraín, F.: ‘Wind power curtailment and energy storage in transmission congestion management considering power plants ramp rates’, IEEE Trans. Power Syst., 2015, 30, pp. 24982506.
    13. 13)
      • 13. Grainger, B.M., Reed, G.F., Sparacino, A.R., et al: ‘Power electronics for grid-scale energy storage’, Proc. IEEE, 2014, 102, pp. 10001013.
    14. 14)
      • 14. Castillo, A., Gayme, D.F.: ‘Grid-scale energy storage applications in renewable energy integration: A survey’, Energy Conv. Manag., 2014, 87, pp. 885894.
    15. 15)
      • 15. Kintner-Meyer, M.C.W., Balducci, P.J., Viswanathan, V.V., et al: ‘Energy storage for power systems applications: A regional assessment for the northwest power pool’, 2012. Available at
    16. 16)
      • 16. U. S. Department of Energy: ‘Grid energy storage’, 2013. Available at
    17. 17)
      • 17. Sun, Y., Zhong, J., Li, Z., et al: ‘Stochastic scheduling of battery-based energy storage transportation system with the penetration of wind power’, IEEE Trans. Sust. Energy, 2017, 8, pp. 135144.
    18. 18)
      • 18. Pandžić, H., Dvorkin, Y., Qiu, T., et al: ‘Toward cost-efficient and reliable unit commitment under uncertainty’, IEEE Trans. Power Syst., 2016, 31, pp. 970982.
    19. 19)
      • 19. Wang, Y., Xia, Q., Kang, C.: ‘Unit commitment with volatile node injections by using interval optimization’, IEEE Trans. Power Syst., 2011, 26, pp. 17051713.
    20. 20)
      • 20. Wogrin, S., Gayme, D.F.: ‘Optimizing storage siting, sizing, and technology portfolios in transmission-constrained networks’, IEEE Trans. Power Syst., 2015, 30, pp. 33043313.
    21. 21)
      • 21. Ortega-Vazquez, M.A.: ‘Optimal scheduling of electric vehicle charging and vehicle-to-grid services at household level including battery degradation and price uncertainty’, IET Gen. Trans. Distr., 2014, 8, pp. 10071016.
    22. 22)
      • 22. Dvorkin, Y., Pandžić, H., Ortega-Vazquez, M.A., et al: ‘A hybrid stochastic/interval approach to transmission-constrained unit commitment’, IEEE Trans. Power Syst., 2015, 30, pp. 621631.
    23. 23)
      • 23. Benders, J.F.: ‘Partitioning procedures for solving mixed-variables programming problems’, Numer. Math., 1962, 4, pp. 238252.
    24. 24)
      • 24. Birge, J.R., Louveaux, F.V.: ‘A multicut algorithm for two-stage stochastic linear programs’, Eur. J. Oper. Res., 1988, 34, pp. 384392.
    25. 25)
      • 25. Bouffard, F., Galiana, F.D.: ‘An electricity market with a probabilistic spinning reserve criterion’, IEEE Trans. Power Syst., 2004, 19, pp. 300307.
    26. 26)
      • 26. Aminifar, F., Fotuhi-Firuzabad, M., Shahidehpour, M.: ‘Unit commitment with probabilistic spinning reserve and interruptible load considerations’, IEEE Trans. Power Syst., 2009, 24, pp. 388397.
    27. 27)
      • 27. Ahmadi-Khatir, A., Bozorg, M., Charkaoui, R.: ‘Probabilistic spinning reserve provision model in multi-control zone power system’, IEEE Trans. Power Syst., 2013, 28, pp. 28192829.
    28. 28)
      • 28. Grigg, C., Wong, P., Albrecht, P., et al: ‘The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee’, IEEE Trans. Power Syst., 1999, 14, pp. 10101020.
    29. 29)
      • 29. North American Electric Reliability Corporation (NERC): ‘Generating availability data system’, 2015. Available at
    30. 30)
      • 30. Floudas, C.A.: ‘Nonlinear and mixed-integer optimization: fundamentals and applications’ (Oxford University Press, New York, NY, USA, 1995, 1st edn.).
    31. 31)
      • 31. The North American Electric Reliability Corporation: ‘Ancillary services matrix’, 2014. Available at
    32. 32)
      • 32. National Renewable Energy Laboratory: ‘Western wind and solar integration study’, 2010.

Related content

This is a required field
Please enter a valid email address