Real-time parameter estimation based intelligent controllers for AGC operation under varying power system dynamic conditions

Real-time parameter estimation based intelligent controllers for AGC operation under varying power system dynamic conditions

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this paper, real-time parameter estimation based intelligent controller has been proposed for the optimum automatic generation control (AGC) operation of multi-area interconnected power system. In earlier AGC studies, supplementary controllers were designed for presumed power system dynamic conditions, such as constant system loadings, fixed values of power system dynamic model parameters. However in practical AGC system, these power system model parameters, namely frequency bias parameter B, steam chest and reheater time constants & , power system time and gain constants & , load sensitivity factor D, etc., continuously varies depending upon the consumer's load demand and number of power generating units participating in AGC. The controller's operation no longer remains optimum as these system parameters changes from their initial values. In view of the above, parameter estimation based real-time intelligent controller has been designed which automatically adjusts its controller gain settings to its optimum conditions in real-time after sensing changes in power system model parameters. At first, different methodologies are presented to estimate dominant power system model parameters. Then, presented methodologies are utilised in the design of intelligent controller for AGC system. The proposed controller is successfully tested upon IEEE 39 bus system with various case studies.


    1. 1)
      • 1. Hietpas, S.M., Naden, M.: ‘Automatic voltage regulator using an ac voltage–voltage converter’, IEEE Trans. Ind. Appl., 2000, 36, (1), pp. 3338.
    2. 2)
      • 2. Yen, W., Cui, W., Lee, W.J., et al: ‘Pilot-bus-centered automatic voltage control with high penetration level of wind generation’, IEEE Trans. Ind. Appl., 2016, 52, (3), pp. 19621969.
    3. 3)
      • 3. Altıntas, E., Salor, O., Büyükdagl, U.: ‘Correlation between multiple electric arc furnace operations and unscheduled power flows in the interconnection lines at the eastern cross border of ENTSO-E’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 35083517.
    4. 4)
      • 4. Roe, T.J., Baggs, R.G., Porcaro, C.R.: ‘Computer control of an industrial electrical system with in-plant generation’, IEEE Trans Ind. Appl., 1978, IA-14, (5), pp. 387396.
    5. 5)
      • 5. Ravikumar, K.G., Alghamdi, T., Bugshan, J., et al: ‘Complete power management system for an industrial refinery’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 35653573.
    6. 6)
      • 6. Cai, L., He, Z., Hu, H.: ‘A new load frequency control method of multi-area power system via the viewpoints of port-Hamiltonian system and cascade system’, IEEE Trans. Power Syst., 2016, PP, (99), pp. 111. (Early access article).
    7. 7)
      • 7. Benysek, G., Bojarski, J., Smolenski, R., et al: ‘Application of stochastic decentralized active demand response (DADR) system for load frequency control’, IEEE Trans. Smart Grid, 2016, PP, (99), pp. 18. (Early access article).
    8. 8)
      • 8. Rahman, A., Saikia, L.C., Sinha, N.: ‘Automatic generation control of an unequal four-area thermal system using biogeography based optimised 3DOF-PID controller’, IET Gener. Transm. Distrib., 2016, 10, (16), pp. 41184129.
    9. 9)
      • 9. Ibarra, J.J, Morales, M.I., Cabrera, W.J., et al: ‘AGC parameter determination for an oil facility electric system’, IEEE Trans. Ind. Appl., 2014, 50, (4), pp. 28762882.
    10. 10)
      • 10. Elgerd, O.I., Fosha, C.E.: ‘Optimum megawatt frequency control of multi-area electric energy systems’, IEEE Trans. Power Appar. Syst., 1970, PAS-89, (4), pp. 556563.
    11. 11)
      • 11. Pathak, N., Nasiruddin, I., Bhatti, T.S.: ‘A more realistic model of centralized automatic generation control in real-time environment’, Elect. Power Comp. Sys., 2015, 43, (19), pp. 19.
    12. 12)
      • 12. Nasiruddin, I., Kumar, P., Hasan, N., et al: ‘Sub-optimal automatic generation control of interconnected power system using output vector feedback control strategy’, Elect. Power Comp. Syst., 2012, 40, (9), pp. 977994.
    13. 13)
      • 13. Sharma, G., Ibraheem, N., Niazi, K.R., et al: ‘Adaptive fuzzy critic based control design for AGC of power system connected via AC/DC tie-lines’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 560569.
    14. 14)
      • 14. Chidambaram, I.A., Francis, R.: ‘Automatic generation control of a two area reheat interconnected power system based on CPS using fuzzy neural network’. IEEE Int. Conf. Emerging Trends in Electrical and Computer Technology, Nagercoil, India, 23–24 March 2011, pp. 200205.
    15. 15)
      • 15. Ersdal, A.M., Imsland, L., Uhlen, K.: ‘Model predictive load-frequency control’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 777785.
    16. 16)
      • 16. Peng, C., Li, J., Fei, M.: ‘Resilient event-triggering H load frequency control for multi-area power systems with energy-limited DoS attacks’, IEEE Trans. Power Syst., 2016, PP, (99), pp. 19. (Early access article).
    17. 17)
      • 17. Dong, L., Tang, Y., He, H., et al: ‘An event-triggered approach for load frequency control with supplementary ADP’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 581589.
    18. 18)
      • 18. Pathak, N., Bhatti, T.S., Verma, A., et al: ‘Real-time automatic generation control considering communication delays using linear matrix inequalities’. 2016 IEEE 6th Int. Conf. Power Systems (ICPS), New Delhi, India, 4–6 Mar 2016, pp. 16.
    19. 19)
      • 19. Xu, Y., Li, F., Jin, Z., et al: ‘Dynamic gain-tuning control (DGTC) approach for AGC with effects of wind power’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 33393348.
    20. 20)
      • 20. Demiroren, A., Zeynelgil, H.L.: ‘GA application to optimization of AGC in three-area power system after deregulation’, Int. J. Electr. Power Energy Syst., 2007, 29, (3), pp. 230240.
    21. 21)
      • 21. Pathak, N., Bhatti, T.S., Verma, A.: ‘New performance indices for the optimization of controller gains of automatic generation control of an interconnected thermal power system’, Sustain. Energy Grids Netw., Elsevier, 2016, 9, pp. 2737.
    22. 22)
      • 22. Debbarma, S., Saikia, L.C., Sinha, N.: ‘AGC of a multi-area thermal system under deregulated environment using a non-integer controller’, Electr. Power Syst. Res., 2013, 95, pp. 175183.
    23. 23)
      • 23. Shiva, C.K., Mukherjee, V.: ‘Automatic generation control of multi-unit multi-area deregulated power system using a novel quasi-oppositional harmony search algorithm’, IET Gener. Transm. Distrib., 2015, 9, (15), pp. 23982408.
    24. 24)
      • 24. Sharma, Y., Saikia, L.C.: ‘Automatic generation control of multi-area ST-thermal power system using grey wolf optimizer algorithm based classical controllers’, Int. J. Electr. Power Energy Syst., 2015, 73, pp. 853862.
    25. 25)
      • 25. Kumar, A., Malik, O.P., Hope, G.S.: ‘Discrete variable structure controller for load frequency control of multi-area interconnected power systems’, IEE Proceedings C Gener. Transm. Distrib., 1987, 134, (2), pp. 116122.
    26. 26)
      • 26. Ramakrishna, K.S.S., Bhatti, T.S.: ‘Sampled-data automatic load frequency control of a single area power system with multi-source power generation’, Electr. Power Components Syst., 2007, 35, pp. 955980.
    27. 27)
      • 27. Ramakrishna, K.S.S., Sharma, P., Bhatti, T.S.: ‘Automatic generation control of interconnected power system with diverse sources of power generation’, Int. J. Eng. Sci. Technol., 2010, 2, (5), pp. 5165.
    28. 28)
      • 28. Pathak, N., Verma, A., Bhatti, T.S.: ‘Study the effect of system parameters on controller gains for discrete AGC of hydro-thermal system’. 2015 Annual IEEE India Conf. (INDICON), New Delhi, India, 17–20 December, 2015, pp. 15.
    29. 29)
      • 29. Pathak, N., Verma, A., Bhatti, T.S.: ‘Automatic generation control of thermal power system under varying steam turbine dynamic model parameters based on generation schedules of the plants’, IET J. Eng., 2016, 2016, (8), pp. 302314.
    30. 30)
      • 30. Ion, B.: ‘Synchronous generators’ (CRC Press, Taylor & Francis, New York, 2016, 2nd edn.), pp. 7577.
    31. 31)
      • 31. Young, P.C.: ‘Recursive estimation and time-series analysis’ (Springer, New York, 2011, 2nd edn.) pp. 1398.
    32. 32)
      • 32. Hanzalek, F.J.: ‘Economic combination and operation of boiler throttle valves’, July 26, 1966, U.S. Patent-3262431.
    33. 33)
      • 33. Woodcock, J.: ‘Steam reheater control for turbine power plant’, October 23, 1973, U.S. Patent-3766732.
    34. 34)
      • 34. Kumar, N., Panigrahi, B.K., Singh, B.: ‘A solution to the ramp rate and prohibited operating zone constrained unit commitment by GHS-JGT evolutionary algorithm’, Int. J. Elect. Power Energy Syst., 2016, 81, pp. 193203.

Related content

This is a required field
Please enter a valid email address