access icon free Multiscale multivariate fuzzy entropy-based technique to distinguish transformer magnetising from fault currents

As vectors' similarity is defined on the basis of the hard boundary of Heaviside function in multiscale multivariate sample entropy, the two families of statistics show high sensitivity to the similarity tolerance. Multiscale multivariate fuzzy entropy (MMFE), which applied fuzzy membership function, overcomes the problem. Hence, the visualisation inrush current discrimination algorithm based on MMFE is proposed. The proposed algorithm divides the MMFE-τ plane into two parts: active and braking zones. The ratio of the current entropy area to the given braking zone area is designated as the entropy area ratio. The magnetising inrush and fault current of the transformer are identified on the basis of the numerical value comparison between the entropy area ratio and the fixed value of 1. Through the ATP/EMTP platform and dynamic testing system, the transformer currents under different operating conditions are analysed. Results demonstrate that the proposed algorithm can effectively distinguish the magnetising inrush from the fault current of the transformer and is superior to other methods.

Inspec keywords: functional analysis; fuzzy set theory; power system faults; EMTP; power transformer protection; fault currents; fuzzy systems; moving average processes; nonlinear dynamical systems; entropy

Other keywords: fuzzy membership function; transformer magnetising; multiscale multivariate fuzzy entropy-based technique; MMFE; transformer currents; magnetising inrush; braking zones; active zones; algorithm divides; multiscale multivariate sample entropy; fault current; similarity tolerance; given braking zone area; entropy area ratio; hard boundary; current discrimination algorithm; Heaviside function; vectors; current entropy area

Subjects: Function theory, analysis; Probability theory, stochastic processes, and statistics; Transformers and reactors; Combinatorial mathematics

References

    1. 1)
      • 14. Tripathy, M., Maheshwari, R.P., Verma, H.K., et al: ‘Probabilistic neural-network-based protection of power transformer’, IET Electr. Power Appl., 2007, 1, (5), pp. 793798.
    2. 2)
      • 23. Li, P., Ji, L., Yan, C., et al: ‘Coupling between short-term heart rate and diastolic period is reduced in heart failure patients as indicated by multivariate entropy analysis’. Proc. Int. Conf. on Computing in Cardiology, Cambridge, MA, USA, September 2014, pp. 97100.
    3. 3)
      • 21. Chen, W., Wang, Z., Xie, H., et al: ‘Characterization of surface EMG signal based on fuzzy entropy’, IEEE Trans. Neural Syst. Rehabil. Eng., 2007, 15, (2), pp. 266272.
    4. 4)
      • 27. Peng, F., Gao, H., Liu, Y.: ‘Transformer sympathetic inrush characteristics and identification based on substation-area information’, IEEE Trans. Power Deliver., 2018, 33, (1), pp. 218228.
    5. 5)
      • 25. Hamilton, R.: ‘Analysis of transformer inrush current and comparison of harmonic restraint methods in transformer protection’, IEEE Trans. Ind. Appl., 2013, 49, (4), pp. 18901899.
    6. 6)
      • 12. Shah, A.M., Bhalja, B.R.: ‘Discrimination between internal faults and other disturbances in transformer using the support vector machine-based protection scheme’, IEEE Trans. Power Deliver., 2013, 28, (3), pp. 15081515.
    7. 7)
      • 7. Phadke, A.G., Thorp, J.S.: ‘A new computer-based flux-restrained current-differential relay for power transformer protection’.IEEE Trans. Power Appl. Syst., 1983, 102, (11), pp. 36243629.
    8. 8)
      • 13. Hao, W.B., Li, Q.Z., Ma, Q.A., et al: ‘Simulation study and algorithm implementation of transformer excitation inrush current based on support vector machine’, Power Syst. Technol., 2006, 30, (1), pp. 6064.
    9. 9)
      • 2. Lin, X., Huang, J., Zeng, L., et al: ‘Analysis of electromagnetic transient and adaptability of second-harmonic restraint based differential protection of UHV power transformer’, IEEE Trans. Power Deliver., 2010, 25, (4), pp. 22992307.
    10. 10)
      • 1. Murugan, S.K., Simon, S.P., Nayak, P.S.R., et al: ‘Power transformer protection using chirplet transform’, IET Gener. Transm. Dis., 2016, 10, (10), pp. 25202530.
    11. 11)
      • 5. He, B., Zhang, X., Bo, Z.Q.: ‘A new method to identify inrush current based on error estimation’, IEEE Trans. Power Deliver., 2006, 21, (3), pp. 11631168.
    12. 12)
      • 6. Dou, N., Toyama, A., Satoh, K., et al: ‘Identification of magnetizing inrush current phenomena in a distribution system’, Electr. Eng. Jpn., 2012, 181, (1), pp. 110.
    13. 13)
      • 16. Ahmed, M.U., Rehman, N., Looney, D.: ‘Multivariate entropy analysis with data-driven scales’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Kyoto, Japan, January 2012, pp. 39013904.
    14. 14)
      • 18. Valencia, J.F., Porta, A., Vallverdu, M., et al: ‘Refined multiscale entropy: application to 24-h Holter recordings of heart period variability in healthy and aortic stenosis subjects’, IEEE Trans. Biomed. Eng., 2009, 56, (9), pp. 22022213.
    15. 15)
      • 20. Ahmed, M.U., Mandic, D.P.: ‘Multivariate multiscale entropy analysis’, IEEE Signal Proc. Lett., 2012, 19, (2), pp. 9194.
    16. 16)
      • 9. Jin, E.S., Liu, L.L., Bo, Z.Q., et al: ‘Application of equivalent instantaneous inductance algorithm to the Y-Δ three-phase transformer’. Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, July 2008, pp. 16.
    17. 17)
      • 24. Azami, H., Escudero, J.: ‘Refined composite multivariate generalized multiscale fuzzy entropy: a tool for complexity analysis of multichannel signals’, Physica A, 2017, 465, pp. 261276.
    18. 18)
      • 4. Guillen, D., Esponda, H., Vazquez, E., et al: ‘Algorithm for transformer differential protection based on wavelet correlation modes’, IET Gener. Transm. Dis., 2016, 10, (12), pp. 28712879.
    19. 19)
      • 17. Costa, M., Goldberger, A.L., Peng, C.K.: ‘Multiscale entropy analysis of complex physiologic time series’, Phys. Rev. Lett., 2002, 89, (6), pp. 068102/1068102/4.
    20. 20)
      • 3. Lin, X., Liu, P., Malik, O.P.: ‘Studies for identification of the inrush based on improved correlation algorithm’, IEEE Trans. Power Deliver., 2002, 17, (4), pp. 901907.
    21. 21)
      • 8. Ge, B., Almeida, A.T.D., Zheng, Q., et al: ‘An equivalent instantaneous inductance-based technique for discrimination between inrush current and internal faults in power transformers’, IEEE Trans. Power Deliver., 2005, 20, (4), pp. 24732482.
    22. 22)
      • 26. Richman, J.S., Moorman, J.R.: ‘Physiological time-series analysis using approximate and sample entropy’, Am. J. Physiol. Heart Circ. Physiol., 2000, 278, pp. H2039H2049.
    23. 23)
      • 28. Balaga, H., Gupta, N., Vishwakarma, D.H.: ‘GA trained parallel hidden layered ANN based differential protection of three phase power transformer’, Int. J. Electr. Power Energy Syst., 2015, 67, pp. 286297.
    24. 24)
      • 15. Gaouda, A.M., Salama, M.M.A.: ‘DSP wavelet-based tool for monitoring transformer inrush currents and internal faults’, IEEE Trans. Power Deliver., 2010, 25, (3), pp. 12581267.
    25. 25)
      • 22. Chen, W., Zhuang, J., Yu, W., et al: ‘Measuring complexity using FuzzyEn, ApEn, and SampEn’, Med. Eng. Phys., 2009, 31, (1), pp. 6168.
    26. 26)
      • 11. Ozgonenel, O., Kilic, E.: ‘Modeling and real-time fault identification in transformers’, J. Franklin I., 2008, 345, (3), pp. 205225.
    27. 27)
      • 19. Ahmed, M.U., Mandic, D.P.: ‘Multivariate multiscale entropy: a tool for complexity analysis of multichannel data’, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2011, 84, (6), pp. 061918/1061918/10.
    28. 28)
      • 10. Ma, J., Wang, Z., Yang, Q., et al: ‘A two terminal network-based method for discrimination between internal faults and inrush currents’. IEEE Trans. Power Deliver., 2010, 25, (3), pp. 15991605.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5292
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5292
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading