Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Deep-learning based fault diagnosis using computer-visualised power flow

Changes in system topology, such as branch breaking and the loss of a generator or load, may profoundly influence the operation security of the power system. This study introduces a novel deep-learning based fault diagnosis method using power flow to diagnose topology changes in the power system. Power flow samples with different system states and topologies are first computed numerically; then, they are transformed into computer-visualised images. Using massive power-flow image samples, a convolutional neural network that aims to identify the system state is trained. A feature-map restriction technique is used to restructure the network. To enhance the robustness of the network, the random noise of branch flow is considered in the sample generation process. The results show that the proposed deep-learning based method may diagnose system faults effectively.

References

    1. 1)
      • 23. Silver, D., Schrittwieser, J., Simonyan, K., et al: ‘Mastering the game of go without human knowledge’, Nature, 2017, 550, pp. 354359.
    2. 2)
      • 11. LeCun, Y., Bengio, Y., Hinton, G.: ‘Deep learning’, Nature, 2015, 521, pp. 436444.
    3. 3)
      • 22. Kong, W., Dong, Z.Y., Hill, D.J., et al: ‘Short-term residential load forecasting based on resident behaviour learning’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 10871088.
    4. 4)
      • 9. Bi, T., Yan, Z., Wen, F., et al: ‘On-line fault section estimation in power systems with radial basis function neural network’, Int. J. Electr. Power Energy Syst., 2002, 24, (4), pp. 321328.
    5. 5)
      • 28. Anderson, P.M., Fouad, A.A.: ‘Power system control and stability’ (The Iowa State University Press, Ames, 1977).
    6. 6)
      • 12. Hinton, G.E., Salakhutdinov, R.R.: ‘Reducing the dimensionality of data with neural networks’, Science, 2006, 313, (5786), pp. 504507.
    7. 7)
      • 26. Deep learn toolbox’. Available at https://github.com/rasmusbergpalm/DeepLearnToolbox.
    8. 8)
      • 19. Mocanu, E., Mocanu, D.C., Nguyen, P.H.: ‘On-line building energy optimization using deep reinforcement learning’, IEEE Trans. Smart Grid, 2018, PP, doi: 10.1109/TSG.2018.2834219.
    9. 9)
      • 1. Salehi-Dobakhshari, A., Ranjbar, A.M.: ‘Application of synchronised phasor measurements to wide-area fault diagnosis and location’, IET Gener. Transm. Distrib., 2014, 8, (4), pp. 716729.
    10. 10)
      • 3. Xu, L., Kezunovic, M.: ‘Implementing fuzzy reasoning petri-nets for fault section estimation’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 676685.
    11. 11)
      • 5. Oliveira, A.L., de Araújo, O.C.B., Cardoso, G., et al: ‘A mixed integer programming model for optimal fault section estimation in power systems’, Int. J. Electr. Power Energy Syst., 2016, 77, pp. 372384.
    12. 12)
      • 16. Varga, E.D., Beretka, S.F., Noce, C., et al: ‘Robust real-time load profile encoding and classification framework for efficient power systems operation’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 18971904.
    13. 13)
      • 29. scikit-learn’. Available at http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.
    14. 14)
      • 21. He, Y., Mendis, G.J., Wei, J.: ‘Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism’, IEEE Trans. Smart Grid, 2017, 8, (5), pp. 25052516.
    15. 15)
      • 18. Zheng, Z., Yang, Y., Niu, X., et al: ‘Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids’, IEEE Trans. Ind. Inf., 2018, 14, (4), pp. 16061615.
    16. 16)
      • 13. Schmidhuber, J.: ‘Deep learning in neural networks: an overview’, Neural Netw., 2015, 61, pp. 85117.
    17. 17)
      • 24. Mnih, V., Kavukcuoglu, K., Silver, D., et al: ‘Human-level control through deep reinforcement learning’, Nature, 2015, 518, pp. 529533.
    18. 18)
      • 20. López, K.L., Gagné, C., Gardner, M.A.: ‘Demand-side management using deep learning for smart charging of electric vehicles’, IEEE Trans. Smart Grid, 2018, PP, doi: 10.1109/TSG.2018.2808247.
    19. 19)
      • 25. Imagenet database’. Available at http://www.image-net.org.
    20. 20)
      • 10. Cardoso, G., Rolim, J.G., Zürn, H.H.: ‘Application of neural-network modules to electric power system fault section estimation’, IEEE Trans. Power Deliv., 2004, 19, (3), pp. 10341041.
    21. 21)
      • 4. Zhu, Y., Huo, L., Lu, J.: ‘Bayesian networks-based approach for power systems fault diagnosis’, IEEE Trans. Power Deliv., 2006, 21, (2), pp. 634639.
    22. 22)
      • 2. Sun, J., Qin, S.Y., Song, Y.H.: ‘Fault diagnosis of electric power systems based on fuzzy petri nets’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 20532059.
    23. 23)
      • 27. Neural networks and deep learning’. Available at http://neuralnetworksanddeeplearning.com.
    24. 24)
      • 7. Lee, H.J., Ahn, B.S., Park, Y.M.: ‘A fault diagnosis expert system for distribution substations’, IEEE Trans. Power Deliv., 2000, 15, (1), pp. 9297.
    25. 25)
      • 8. dos Santos Fonseca, W.A., Bezerra, U.H., Nunes, M.V.A., et al: ‘Simultaneous fault section estimation and protective device failure detection using percentage values of the protective devices alarms’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 170180.
    26. 26)
      • 17. Nguyen, V.N., Jenssen, R., Roverso, D.: ‘Automatic autonomous vision-based power line inspection: a review of current status and the potential role of deep learning’, Int. J. Electr. Power Energy Syst., 2018, 99, pp. 107120.
    27. 27)
      • 15. Mocanu, E., Nguyen, P.H., Gibescu, M., et al: ‘Deep learning for estimating building energy consumption’, Sustain. Energy Grids Netw., 2016, 6, pp. 9199.
    28. 28)
      • 14. Shi, H., Xu, M., Li, R.: ‘Deep learning for household load forecasting–a novel pooling deep RNN’, IEEE Trans. Smart Grid, 2017, PP, doi: 10.1109/TSG.2017.2686012.
    29. 29)
      • 6. Chen, W.H., Tsai, S.H., Lin, H.I.: ‘Fault section estimation for power networks using logic cause-effect models’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 963971.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5254
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5254
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address