http://iet.metastore.ingenta.com
1887

Comprehensive mixed-integer linear programming model for distribution system reconfiguration considering DGs

Comprehensive mixed-integer linear programming model for distribution system reconfiguration considering DGs

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Distribution system reconfiguration (DSR) is a critical process that improves the power transfer efficiency and reduces the over-all operational cost. There have been various methods for addressing the DSR problems. Recently, DSR problems formulated in mixed-integer linear programming (MILP) has gained popularity as they generally can be solved by the state-of-the-art commercially accessible linear programming solvers, and is able to solve the system with thousands of unknown variables within a reasonable time. However, in some MILP formulations, the distribution line losses are omitted in the nodal power injections for the sake of simplicity. This compromises the accuracy of the linearised model and contributes to the disparity between the MILP and the true non-linear model. Hence, in this study, new formulations are introduced for embedding the expressions of line losses inside load flow equations so that the deviations between the modelled and exact losses notably reduce. Moreover, other novel formulations have also been presented for simultaneously optimising distributed generation (DG) locations and sizes, while at the same time considering various DG's modes of connection to the distribution grid. The validity and effectiveness of the proposed MILP model is tested on standard IEEE systems and actual distribution network.

References

    1. 1)
      • 1. Teshome, D.F., Lian, K.L.: ‘A smart distribution system reconfiguration algorithm with optimal active power scheduling considering various types of distributed generators’, IEE J. Trans. Electr. Electron. Eng., 2016, 11, (5), pp. 564576. Available at http://dx.doi.org/10.1002/tee.22274.
    2. 2)
      • 2. Merlin, A., Back, H.: ‘Search for a minimal–loss operating spanning tree configuration in an urban power distribution system’. Proc. 5th Power System Computation Conf., September 1975.
    3. 3)
      • 3. Civanlar, S., Grainger, J.J., Yin, H., et al: ‘Distribution feeder reconfiguration for loss reduction’, IEEE Trans. Power Deliv., 1988, 3, (3), pp. 12171223.
    4. 4)
      • 4. Baran, M.E., Wu, F.F.: ‘Network reconfiguration in distribution systems for loss reduction and load balancing’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 14011407.
    5. 5)
      • 5. Gomes, F.V., Carneiro, S., Pereira, J.L.R., et al: ‘A new heuristic reconfiguration algorithm for large distribution systems’, IEEE Trans. Power Syst., 2005, 20, (3), pp. 13731378.
    6. 6)
      • 6. Shirmohammadi, D., Hong, H.W.: ‘Reconfiguration of electric distribution networks for resistive line losses reduction’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 14921498.
    7. 7)
      • 7. Raju, G.K.V., Bijwe, P.R.: ‘An efficient algorithm for minimum loss reconfiguration of distribution system based on sensitivity and heuristics’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 12801287.
    8. 8)
      • 8. Sarfi, R.J., Salama, M.M.A., Chikhani, A.Y: ‘Survey of the state of the art in distribution system reconfiguration for system loss reduction’, Electr. Power Syst. Res., 1994, 31, (1), pp. 6170.
    9. 9)
      • 9. Peng, Q., Tang, Y., Low, S.H.: ‘Feeder reconfiguration in distribution networks based on convex relaxation of OPF’, IEEE Trans. Power Syst., 2016, 30, (4), pp. 17931804.
    10. 10)
      • 10. Kalambe, S., Agnihotri, G.: ‘Loss minimization techniques used in distribution network: bibliographical survey’, Renew. Sust. Energy Rev., 2014, 29, pp. 184200. Available at http://www.sciencedirect.com/science/article/pii/S1364032113006151.
    11. 11)
      • 11. Tang, L., Yang, F., Ma, J.: ‘A survey on distribution system feeder reconfiguration: objectives and solutions’. 2014 IEEE Innovative Smart Grid Technologies – Asia (ISGT ASIA), May 2014, pp. 6267.
    12. 12)
      • 12. Chiang, H.D., Rene, J.-J.: ‘Optimal network reconfigurations in distribution systems–I: a new formulation and a solution methodology’, IEEE Trans. Power Deliv., 1990, 5, (4), pp. 19021909.
    13. 13)
      • 13. Jeon, Y.-J., Kim, J.-C., Kim, J.-O., et al: ‘An efficient simulated annealing algorithm for network reconfiguration in large–scale distribution systems’, IEEE Trans. Power Deliv., 2002, 17, (4), pp. 10701078.
    14. 14)
      • 14. Nara, K., Shiose, A., Kitagawa, M., et al: ‘Implementation of genetic algorithm for distribution systems loss minimum re-configuration’, IEEE Trans. Power Syst., 1992, 7, (3), pp. 10441051.
    15. 15)
      • 15. Zhu, J.Z.: ‘Optimal reconfiguration of electrical distribution network using the refined genetic algorithm’, Electr. Power Syst. Res., 2002, 62, (1), pp. 3742.
    16. 16)
      • 16. Srinivasa, R.R., Ravindra, K., Satish, K., et al: ‘Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 10801088.
    17. 17)
      • 17. Khodr, H.M., Martinez-Crespo, J., Matos, M.A., et al: ‘Distribution systems reconfiguration based on OPF using benders decomposition’, IEEE Trans. Power Deliv., 2009, 24, (4), pp. 21662176.
    18. 18)
      • 18. Shahidehopour, M., Yong, F.: ‘Benders decomposition: applying benders decomposition to power systems’, IEEE Power Energy Mag., 2005, 3, (2), pp. 2021.
    19. 19)
      • 19. Jabr, R.A., Singh, R., Pal, B.C.: ‘Minimum loss network reconfiguration using mixed–integer convex programming’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 11061115.
    20. 20)
      • 20. LÃşpez, J.C., Lavorato, M., Franco, J.F., et al: ‘Robust optimisation applied to the reconfiguration of distribution systems with reliability constraints’, IET Gener. Transm. Distrib., 2016, 10, (4), pp. 917927.
    21. 21)
      • 21. Hijazi, H.L., ThiÃl'baux, S.: ‘Optimal AC distribution systems reconfiguration’. 2014 Power Systems Computation Conf., August 2014, pp. 1–7.
    22. 22)
      • 22. Ramos, E.R., Exposito, A.G., Santos, J.R., et al: ‘Path–based distribution network modeling: application to reconfiguration for loss reduction’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 556564.
    23. 23)
      • 23. Llorens-Iborra, F., Riquelme-Santos, J., Romero-Ramos, E.: ‘Mixed–integer linear programming model for solving reconfiguration problems in large–scale distribution systems’, Electr. Power Syst. Res., 2012, 88, pp. 137145.
    24. 24)
      • 24. Borges, M.C.O., Franco, J.F., Rider, M.J.: ‘Optimal reconfiguration of electrical distribution systems using mathematical programming’, J. Control Autom. Electr. Syst., 2014, 25, (1), pp. 103111.
    25. 25)
      • 25. Borghetti, A.: ‘A mixed-integer linear programming approach for the computation of the minimum–losses radial configuration of electrical distribution networks’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 12641273.
    26. 26)
      • 26. Franco, J.F., Rider, M.J., Lavorato, M., et al: ‘A mixed-integer LP model for the reconfiguration of radial electric distribution systems considering distributed generation’, Electric. Power Syst. Res., 2013, 97, pp. 5160.
    27. 27)
      • 27. Available at http://www.ibm.com.
    28. 28)
      • 28. Badran, O., Mehilef, S., Mokhlis, H., et al: ‘Optimal reconfiguration of distribution system connected with distributed generations: a review of different methodologies’, Renew. Sust. Energy Rev., 2017, 73, pp. 854867.
    29. 29)
      • 29. Das, S., Das, D., Patra, A.: ‘Reconfiguration of distribution networks with optimal placement of distributed generations in the presence of remote voltage controlled bus’, Renew. Sustain. Energy Rev., 2017, 73, pp. 854867.
    30. 30)
      • 30. Su, S.Y., Lu, C.N., Chang, R.F., et al: ‘Distributed generation interconnection planning: a wind power case study’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 181189.
    31. 31)
      • 31. Gan, L., Li, N., Topcu, U., et al: ‘Branch flow model for radial networks: convex relaxation’. 51st IEEE Conf. Decision and Control, December 2012.
    32. 32)
      • 32. Baran, M.E., Wu, F.F.: ‘Optimal sizing of capacitors placed on a radial distribution system’, IEEE Trans. Power Deliv., 1989, 4, (1), pp. 735743.
    33. 33)
      • 33. Haghighat, H., Zeng, B.: ‘Distribution system reconfiguration under uncertain load and renewable generation’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 26662675.
    34. 34)
      • 34. Available at http://www.mathworks.com.
    35. 35)
      • 35. Available at http://www.gnu.org.
    36. 36)
      • 36. Taher, S.A., Karimi, M.H.: ‘Optimal reconfiguration and {DG} allocation in balanced and unbalanced distribution systems’, Ain Shams Eng. J., 2014, 5, (3), pp. 735749.
    37. 37)
      • 37. Mantovani, J.R.S., Casari, F., Romero, R.A.: ‘Reconfiguraãğãčo de sistemas de distribuiÃğÃčo radiais utilizando o critÃl'rio de queda de tensÃčo’, Revista SBA Controle Andamp; AutomaÃğÃčo, 2000, 11, (3), pp. 150159.
    38. 38)
      • 38. Agurtzane, E., Pablo, E., Esther, T., et al: ‘Review of grid connection requirements for generation assets in weak power grids’, Renew. Sustain. Energy Rev., 2015, 41, pp. 15011514.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5242
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5242
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address