access icon free Data-driven multi-time scale robust scheduling framework of hydrothermal power system considering cascade hydropower station and wind penetration

A data-driven multi-time scale robust scheduling model for a wind–hydro–thermal power system is presented in this study, according to the characteristic that wind power prediction accuracy increases with the decrease of the time scale. In day-ahead scheduling, a generation plan is formulated with the target of minimising the total operating cost, and a data-driven robust optimisation method based on the robust kernel density estimation (RKDE) is employed to deal with the uncertainty of wind power. That is, the distributional information of wind power is extracted by the RKDE from the big data, then the distributional information is incorporated into a data-driven uncertainty set, and finally, a robust optimisation model is formed. During the intraday scheduling stage, the objective is to minimise the total water spillage in cascade hydropower stations and the adjustment cost of thermal units, and the task is to readjust the outputs of units based on the base outputs obtained by the day-ahead scheduling, combined with the rolling forecast data of wind power and load. The real-time scheduling is aimed at satisfying the power balance with minimum power adjustment. Finally, a test system is carried out to verify the efficiency and practicability of the proposed framework.

Inspec keywords: optimisation; hydrothermal power systems; wind power plants; power generation dispatch; hydroelectric power stations; power generation scheduling

Other keywords: data-driven robust optimisation method; minimum power adjustment; wind penetration; cascade hydropower stations; rolling forecast data; wind–hydro–thermal power system; power balance; data-driven multitime scale robust scheduling framework; data-driven multitime scale robust scheduling model; time scale; cascade hydropower station; wind power prediction accuracy increases; robust kernel density estimation; robust optimisation model; hydrothermal power system; big data; data-driven uncertainty; day-ahead scheduling; total operating cost; intraday scheduling stage; distributional information; real-time scheduling

Subjects: Optimisation techniques; Power system management, operation and economics; Other topics in statistics; Wind power plants; Hydroelectric power stations and plants; Thermal power stations and plants

References

    1. 1)
      • 19. Esfahani, P.M., Kuhn, D.: ‘Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations’, Math. Program., 2015, 24, (9), pp. 152.
    2. 2)
      • 20. Chen, Y., Wei, W., Liu, F., et al: ‘Distributionally robust hydro-thermal-wind economic dispatch’, Appl. Energy, 2016, 173, pp. 511519.
    3. 3)
      • 27. Wu, H., Krad, I., Florita, A., et al: ‘Stochastic multi-timescale power system operations with variable wind generation’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 33253337.
    4. 4)
      • 25. Bakirtzis, E.A., Simoglou, C.K., Biskas, P.N., et al: ‘Storage management by rolling stochastic unit commitment for high renewable energy penetration’, Electr. Power Syst. Res., 2018, 158, pp. 240249.
    5. 5)
      • 34. Kim, J.S., Scott, C.: ‘Robust kernel density estimation’, J. Mach. Learn. Res., 2011, 13, (1), pp. 25292565.
    6. 6)
      • 36. Wu, J.K., Guo, Z.Z., Ding, G.Q.: ‘Short term multi-objective optimization scheduling with dynamic water spillage strategy for cascade hydroelectric plants’, Proc. CSEE, 2011, 31, (4), pp. 1523.
    7. 7)
      • 38. ‘BARON’. Available at https://www.gams.com/latest/docs/S_BARON.html, accessed 20 March 2018.
    8. 8)
      • 6. Yuan, X., Cao, B., Yang, B., et al: ‘Hydrothermal scheduling using chaotic hybrid differential evolution’, Energy Convers. Manage., 2008, 49, (12), pp. 36273633.
    9. 9)
      • 10. Almeida, K.C., Conejo, A.J.: ‘Medium-term power dispatch in predominantly hydro systems: an equilibrium approach’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 23842394.
    10. 10)
      • 30. Vandermeulen, R.A., Scott, C.D.: ‘Robust kernel density estimation by scaling and projection in Hilbert space’, Adv. Neural. Inf. Process. Syst., 2014, 1, pp. 433441.
    11. 11)
      • 7. Mandal, K.K., Chakraborty, N.: ‘Optimal scheduling of cascaded hydrothermal systems using a new improved particle swarm optimization technique’, Smart Grid Renew. Energy, 2011, 2, (3), pp. 282292.
    12. 12)
      • 15. Ahmadi, A., Masouleh, M.S., Janghorbani, M., et al: ‘Short term multi-objective hydrothermal scheduling’, Electr. Power Syst. Res., 2015, 121, pp. 357367.
    13. 13)
      • 32. Zhang, X., King, M.L., Hyndman, R.J.: ‘A Bayesian approach to bandwidth selection for multivariate kernel density estimation’, Comput. Stat. Data Anal., 2006, 50, (11), pp. 30093031.
    14. 14)
      • 4. Kumar, V.S., Mohan, M.R.: ‘A genetic algorithm solution to the optimal short-term hydrothermal scheduling’, Int. J. Electr. Power Energy Syst., 2011, 33, (4), pp. 827835.
    15. 15)
      • 37. Rajan, C.C.A.: ‘Hydro-thermal unit commitment problem using simulated annealing embedded evolutionary programming approach’, Int. J. Electr. Power Energy Syst., 2011, 33, (4), pp. 939946.
    16. 16)
      • 12. Chen, Y., Liu, F., Liu, B., et al: ‘An efficient MILP approximation for the hydro-thermal unit commitment’, IEEE Trans. Power Syst., 2015, 31, (4), pp. 33183319.
    17. 17)
      • 14. Zhu, Y., Jian, J., Wu, J., et al: ‘Global optimization of non-convex hydro-thermal coordination based on semidefinite programming’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 37203728.
    18. 18)
      • 23. Kargarian, A., Hug, G., Mohammadi, J.: ‘A multi-time scale co-optimization method for sizing of energy storage and fast-ramping generation’, IEEE Trans. Sustain. Energy, 2016, 7, (4), pp. 13511361.
    19. 19)
      • 22. Cui, M., Zhang, J., Wu, H., et al: ‘Wind-friendly flexible ramping product design in multi-timescale power system operations’, IEEE Trans. Sustain. Energy, 2017, 8, (3), pp. 10641075.
    20. 20)
      • 21. Alizadeh, M.I., Moghaddam, M.P., Amjady, N.: ‘Multi-stage multi-resolution robust unit commitment with non-deterministic flexible ramp considering load and wind variabilities’, IEEE Trans. Sustain. Energy, 2018, 9, (2), pp. 872883.
    21. 21)
      • 1. Gupta, S.K., Malik, M.: ‘Review of hydrothermal scheduling technique’. MANTHAN-2016 National Conf. on Recent Trends in Computing and Communication Technologies (RCCT-2016), India, September 2016, pp. 19.
    22. 22)
      • 31. Chen, F., Yu, H., Yao, J., et al: ‘Robust sparse kernel density estimation by inducing randomness’, Pattern Anal. Appl., 2015, 18, (2), pp. 367375.
    23. 23)
      • 28. Tang, Y., Liu, Y., Ning, J., et al: ‘Multi-time scale coordinated scheduling strategy with distributed power flow controllers for minimizing wind power spillage’, Energies, 2017, 10, (11), pp. 18041819.
    24. 24)
      • 17. Peng, C., Xie, P., Pan, L., et al: ‘Flexible robust optimization dispatch for hybrid wind/photovoltaic/hydro/thermal power system’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 751762.
    25. 25)
      • 39. ‘Generalized Algebraic Modeling System (GAMS)’. Available at http://www. Gams.com/, accessed 20 March 2018.
    26. 26)
      • 9. Helseth, A., Gjelsvik, A., Mo, B., et al: ‘A model for optimal scheduling of hydro thermal systems including pumped-storage and wind power’, IET Gener. Transm. Distrib., 2013, 7, (12), pp. 14261434.
    27. 27)
      • 13. Cheng, C., Wang, J., Wu, X.: ‘Hydro unit commitment with a head-sensitive reservoir and multiple vibration zones using MILP’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 48424852.
    28. 28)
      • 18. Duan, C., Jiang, L., Fang, W., et al: ‘Data-driven affinely adjustable distributionally robust unit commitment’, IEEE Trans. Power Syst., 2018, 32, (2), pp. 13851398.
    29. 29)
      • 3. Basu, M.: ‘Improved differential evolution for short-term hydrothermal scheduling’, Int. J. Electr. Power Energy Syst., 2014, 58, (58), pp. 91100.
    30. 30)
      • 35. Ning, C., You, F.: ‘A data-driven multistage adaptive robust optimization framework for planning and scheduling under uncertainty’, AIChE J., 2017, 63, (10), pp. 43434369.
    31. 31)
      • 5. Lakshminarasimman, L., Subramanian, S.: ‘A modified hybrid differential evolution for short-term scheduling of hydrothermal power systems with cascaded reservoirs’, Energy Convers. Manage., 2008, 49, (10), pp. 25132521.
    32. 32)
      • 11. Dashti, H., Conejo, A.J., Jiang, R., et al: ‘Weekly two-stage robust generation scheduling for hydrothermal power systems’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 45544564.
    33. 33)
      • 26. Bakirtzis, E.A., Biskas, P.N.: ‘Multiple time resolution stochastic scheduling for systems with high renewable penetration’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 10301040.
    34. 34)
      • 16. Norouzi, M.R., Ahmadi, A., Sharaf, A.M., et al: ‘Short-term environmental/economic hydrothermal scheduling’, Electr. Power Syst. Res., 2014, 116, (11), pp. 117127.
    35. 35)
      • 24. Wang, S., Yu, D., Yu, J.: ‘A coordinated dispatching strategy for wind power rapid ramp events in power systems with high wind power penetration’, Int. J. Electr. Power Energy Syst., 2015, 64, pp. 986995.
    36. 36)
      • 2. Hossain, S.M., Shiblee, M.S.A.A.: ‘A short review study on problems during hydro-thermal optimal scheduling’, Int. J. Adv. Technol. Eng. Explor., 2017, 4, (34), pp. 23945443.
    37. 37)
      • 8. Narang, N.: ‘Short-term hydrothermal generation scheduling using improved predator influenced civilized swarm optimization technique’, Appl. Soft Comput., 2017, 58, pp. 207224.
    38. 38)
      • 29. Warrington, J., Hohl, C., Goulart, P.J., et al: ‘Rolling unit commitment and dispatch with multi-stage recourse policies for heterogeneous devices’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 187197.
    39. 39)
      • 33. Zhang, X., Brooks, R.D., King, M.L.: ‘A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation’, J. Econom., 2009, 153, (1), pp. 2132.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5239
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5239
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading