access icon free Energy storage management strategy in distribution networks utilised by photovoltaic resources

Large penetration of electrical energy storage (EES) units and renewable energy resources in distribution systems can help to improve network profiles (e.g. bus voltage and branch current profiles), and to reduce operational cost as well as power losses. On the other hand, unsecure system operation as a result of involving these units is another challenge to network operators. Therefore, establishing a trade-off between operational cost and security is very important. This study presents a new approach to determine the optimal charging/discharging schedule of EES units in distribution systems by employing multi-objective optimisation methods, which will effectively reduce operational cost and enhance distribution network security. In this regard, a voltage stability index (VSI) is converted into a security index to improve the radial network security. This VSI index is treated as a separate objective function, and a multi-objective strategy is implemented to obtain a set of non-dominated solutions instead of a single optimal solution, which simultaneously minimise both of the operational cost and security index. In order to assess the effectiveness and applicability of the proposed method, it is applied to IEEE standard 33-bus and 136-bus distribution test systems, and then the obtained results are compared with those of existing methodologies.

Inspec keywords: power system stability; costing; power system security; energy storage; energy management systems; power generation scheduling; power generation economics; minimisation; photovoltaic power systems; power distribution economics

Other keywords: bus voltage profile; radial network security index; unsecure system operation; EES units; photovoltaic resources; distribution network security; renewable energy resources; voltage stability index; multiobjective strategy; energy storage management strategy; multiobjective optimisation methods; 33-bus distribution test systems; 136-bus distribution test systems; IEEE standard; electrical energy storage units; branch current profiles; optimal charging-discharging schedule determination; VSI

Subjects: Optimisation techniques; Solar power stations and photovoltaic power systems; Power system management, operation and economics; Power system control; Distribution networks

References

    1. 1)
      • 36. Kavasseri, R., Ababei, C.: ‘Reds: repository of distribution systems’, 2015. Available at http://venus.ece.ndsu.nodak.edu/kavasseri/reds.html.
    2. 2)
      • 15. Falahi, M., Lotfifard, S., Ehsani, M., et al: ‘Dynamic model predictive-based energy management of Dg integrated distribution systems’, IEEE Trans. Power Deliv., 2013, 28, (4), pp. 22172227.
    3. 3)
      • 24. Kundur, P., Balu, N.J., Lauby, M.G.: ‘Power system stability and control’ (McGraw-Hill, New York, NY, USA, 1994).
    4. 4)
      • 4. Vieira, C.R., Silva, K.D.M.e., Garcia, F.R.P., et al: ‘Analysis of the impacts of the photovoltaic solar generation in the electrical system of distribution’. 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE), Columbus, OH, USA, April 2018, pp. 7381.
    5. 5)
      • 9. Hellman, H.-P., Pihkala, A., Hyvärinen, M., et al: ‘Benefits of battery energy storage system for system, market, and distribution network–case Helsinki’, CIRED-Open Access Proc. J., 2017, 2017, (1), pp. 15881592.
    6. 6)
      • 12. Koussa, D.S., Koussa, M., Rennane, A., et al: ‘Hybrid diesel-wind system with battery storage operating in standalone mode: control and energy management–experimental investigation’, Energy, 2017, 130, pp. 3847.
    7. 7)
      • 27. Sode-Yome, A., Mithulananthan, N., Lee, K.Y.: ‘A maximum loading margin method for static voltage stability in power systems’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 799808.
    8. 8)
      • 32. Wong, K.P., Dong, Z.Y.: ‘Differential evolution, an alternative approach to evolutionary algorithm’. Proc. 13th Int. Conf. on Intelligent Systems Application to Power Systems, Arlington, VA, USA, November 2005, pp. 7383.
    9. 9)
      • 23. Prada, R., Souza, L.J.: ‘Voltage stability and thermal limit: constraints on the maximum loading of electrical energy distribution feeders’, IEE Proc., Gener. Transm. Distrib., 1998, 145, (5), pp. 573577.
    10. 10)
      • 14. Korada, N., Mishra, M.K.: ‘Grid adaptive power management strategy for an integrated microgrid with hybrid energy storage’, IEEE Trans. Ind. Electron., 2017, 64, (4), pp. 28842892.
    11. 11)
      • 5. Khazaei, H., Vahidi, B., Hosseinian, S.H., et al: ‘Two-level decision-making model for a distribution company in day-ahead market’, IET Gener. Transm. Distrib., 2015, 9, (12), pp. 13081315.
    12. 12)
      • 6. Khazaei, H., Zhao, Y.: ‘A simple payoff allocation mechanism achieves efficiency and stability in renewable energy aggregation’. 2017 IEEE Global Conf. on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 2017, pp. 10251029.
    13. 13)
      • 21. Vournas, C., Anagnostopoulos, I., Souxes, T.: ‘Transmission support using wind farm controls during voltage stability emergencies’, Control Eng. Pract., 2017, 59, pp. 100110.
    14. 14)
      • 3. Upasani, M., Patil, S.: ‘Grid connected solar photovoltaic system with battery storage for energy management’. 2018 2nd Int. Conf. on Inventive Systems and Control (ICISC), Coimbatore, India, January 2018, pp. 438443.
    15. 15)
      • 25. Hamouda, A., Sayah, S.: ‘Optimal capacitors sizing in distribution feeders using heuristic search based node stability-indices’, Int. J. Electr. Power Energy Syst., 2013, 46, pp. 5664.
    16. 16)
      • 22. Al Abri, R., El-Saadany, E.F., Atwa, Y.M.: ‘Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 326334.
    17. 17)
      • 18. Ashraf, S.M., Gupta, A., Choudhary, D.K., et al: ‘Voltage stability monitoring of power systems using reduced network and artificial neural network’, Int. J. Electr. Power Energy Syst., 2017, 87, pp. 4351.
    18. 18)
      • 7. Sami, S.S., Cheng, M., Wu, J., et al: ‘A virtual energy storage system for voltage control of distribution networks’, CSEE J. Power Energy Syst., 2018, 4, (2), pp. 146154.
    19. 19)
      • 17. Tabari, M., Yazdani, A.: ‘An energy management strategy for a Dc distribution system for power system integration of plug-in electric vehicles’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 659668.
    20. 20)
      • 1. Dall'Anese, E., Dhople, S.V., Giannakis, G.B.: ‘Optimal dispatch of photovoltaic inverters in residential distribution systems’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 487497.
    21. 21)
      • 8. Mehmood, K.K., Khan, S.U., Lee, S.J., et al: ‘Optimal sizing and allocation of battery energy storage systems with wind and solar power DGs in a distribution network for voltage regulation considering the lifespan of batteries’, IET Renew. Power Gener., 2017, 11, (10), pp. 13051315.
    22. 22)
      • 35. Baran, M.E., Wu, F.F.: ‘Network reconfiguration in distribution systems for loss reduction and load balancing’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 14011407.
    23. 23)
      • 26. Sajjadi, S.M., Haghifam, M.-R., Salehi, J.: ‘Simultaneous placement of distributed generation and capacitors in distribution networks considering voltage stability index’, Int. J. Electr. Power Energy Syst., 2013, 46, pp. 366375.
    24. 24)
      • 34. Dupačová, J., Gröwe-Kuska, N., Römisch, W.: ‘Scenario reduction in stochastic programming’, Math. Program., 2003, 95, (3), pp. 493511.
    25. 25)
      • 19. Schaab, K., Hahn, J., Wolkov, M., et al: ‘Robust control for voltage and transient stability of power grids relying on wind power’, Control Eng. Pract., 2017, 60, pp. 717.
    26. 26)
      • 16. Deeba, S.R., Sharma, R., Saha, T.K., et al: ‘Evaluation of technical and financial benefits of battery-based energy storage systems in distribution networks’, IET Renew. Power Gener., 2016, 10, (8), pp. 11491160.
    27. 27)
      • 13. Lin, B., Wu, W.: ‘Economic viability of battery energy storage and grid strategy: a special case of China electricity market’, Energy, 2017, 124, pp. 423434.
    28. 28)
      • 11. Agnew, S., Dargusch, P.: ‘Consumer preferences for household-level battery energy storage’, Renew. Sustain. Energy Rev., 2017, 75, pp. 609617.
    29. 29)
      • 31. Zheng, Y., Dong, Z.Y., Luo, F.J., et al: ‘Optimal allocation of energy storage system for risk mitigation of discos with high renewable penetrations’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 212220.
    30. 30)
      • 2. Routhier, A.F., Honsberg, C.: ‘Thermal energy storage to increase solar photovoltaic penetration’. 2017 IEEE 44th Photovoltaic Specialist Conf. (PVSC), Portland, OR, USA, June 2017, pp. 18571861.
    31. 31)
      • 29. Eusuff, M.M., Lansey, K.E.: ‘Optimization of water distribution network design using the shuffled frog leaping algorithm’, J. Water Resour. Plan. Manage., 2003, 129, (3), pp. 210225.
    32. 32)
      • 33. Gitizadeh, M., Vahed, A.A., Aghaei, J.: ‘Multistage distribution system expansion planning considering distributed generation using hybrid evolutionary algorithms’, Appl. Energy, 2013, 101, pp. 655666.
    33. 33)
      • 30. Saboori, H., Hemmati, R.: ‘Maximizing disco profit in active distribution networks by optimal planning of energy storage systems and distributed generators’, Renew. Sustain. Energy Rev., 2017, 71, pp. 365372.
    34. 34)
      • 20. do Nascimento, S., Gouvêa, M.M.: ‘Voltage stability enhancement in power systems with automatic facts device allocation’, Energy Procedia, 2017, 107, pp. 6067.
    35. 35)
      • 10. Olaszi, B.D., Ladanyi, J.: ‘Comparison of different discharge strategies of grid-connected residential PV systems with energy storage in perspective of optimal battery energy storage system sizing’, Renew. Sustain. Energy Rev., 2017, 75, pp. 710718.
    36. 36)
      • 28. Chakravorty, M., Das, D.: ‘Voltage stability analysis of radial distribution networks’, Int. J. Electr. Power Energy Syst., 2001, 23, (2), pp. 129135.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5221
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5221
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading