Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Review on microgrids protection

Microgrid, which is one of the main foundations of the future grid, inherits many properties of the smart grid such as, self-healing capability, real-time monitoring, advanced two-way communication systems, low voltage ride through capability of distributed generator (DG) units, and high penetration of DGs. These substantial changes in properties and capabilities of the future grid result in significant protection challenges such as bidirectional fault current, various levels of fault current under different operating conditions, necessity of standards for automation system, cyber security issues, as well as, designing an appropriate grounding system, fast fault detection/location method, the need for an efficient circuit breaker for DC microgrids. Due to these new challenges in microgrid protection, the conventional protection strategies have to be either modified or substituted with new ones. This study aims to provide a comprehensive review of the protection challenges in AC and DC microgrids and available solutions to deal with them. Future trends in microgrid protection are also briefly discussed.

References

    1. 1)
      • 74. Dashti, H., Sanaye-pasand, M.: ‘Power transformer protection using a multiregion adaptive differential relay’, IEEE Trans. Power Deliv., 2014, 29, (2), pp. 777785.
    2. 2)
      • 144. Tahata, K., Oukaili, S.E., Kamei, K., et al: ‘HVDC circuit breakers for HVDC grid applications’. Proc. AORC-CIGRÉ, Birmingham, UK, 2014, pp. 19.
    3. 3)
      • 22. Knable, H.: ‘A standardized approach to relay coordination’. IEEE Winter Power Meeting, New York, USA, 1969.
    4. 4)
      • 112. Mazur, D.C., Kreiter, J.H., Rourke, M.E., et al: ‘Developing protective relay faceplates: taking advantage of the benefits of IEC 61850’, IEEE Ind. Appl. Mag., 2015, 21, (1), pp. 3340.
    5. 5)
      • 27. Amraee, T.: ‘Coordination of directional overcurrent relays using seeker algorithm’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 14151422.
    6. 6)
      • 115. Fletcher, S.D.A., Norman, P.J., Galloway, S.J., et al: ‘Optimizing the roles of unit and non-unit protection methods within DC microgrids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 20792087.
    7. 7)
      • 83. Jo, H., Joo, S., Lee, K.: ‘Optimal placement of superconducting fault current limiters (SFCLs) for protection of an electric power system with distributed generations (DGs)’, IEEE Trans. Appl. Supercond., 2013, 23, (3), pp. 36.
    8. 8)
      • 135. Li, C., Rakhra, P., Norman, P., et al: ‘Practical computation of di/dt for high-speed protection of DC microgrids’. 2017 IEEE 2nd Int. Conf. Direct Current Microgrids, ICDCM 2017, Nuremberg, Germany, 2017, pp. 153159.
    9. 9)
      • 106. Sarlak, M., Shahrtash, S.M.: ‘High impedance fault detection in distribution networks using support vector machines based on wavelet transform’. 2008 IEEE Canada Electr. Power Conf., Vancouver, Canada, 2008, pp. 16.
    10. 10)
      • 125. Park, J.D., Candelaria, J.: ‘Fault detection and isolation in low-voltage dc-bus microgrid system’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 779787.
    11. 11)
      • 103. Michalik, M., Lukowicz, M., Rabizant, W., et al: ‘New ANN-based algorithms for detecting HIFs in multigrounded MV networks’, IEEE Trans. Power Deliv., 2008, 23, (1), pp. 5866.
    12. 12)
      • 41. Sarwade, A.N., Katti, P.K., Ghodekar, J.G.: ‘Adaptive solutions for distance relay settings’. 2010 9th Int. Power Energy Conf., IPEC 2010, Singapore, Singapore, 2010, pp. 493498.
    13. 13)
      • 151. Ishida, M., Ueda, T., Tanaka, T., et al: ‘Gan on Si technologies for power switching devices’, IEEE Trans. Electron Devices, 2013, 60, (10), pp. 30533059.
    14. 14)
      • 30. Singh, M., Panigrahi, B.K., Abhyankar, A.R., et al: ‘Optimal coordination of directional over-current relays using teaching learning-based optimization (TLBO) algorithm’, Electr. Power Energy Syst., 2013, 50, pp. 3341.
    15. 15)
      • 165. ETSI EN 300 132-3-1. 2011. Available at https://www.etsi.org/deliver/etsi_en/300100_300199/3001320301/02.01.01_40/en_3001320301v020101o.pdf.
    16. 16)
      • 21. Jalilian, A., Hagh, M.T., Hashemi, S.M.: ‘An innovative directional relaying scheme based on postfault current’, IEEE Trans. Power Deliv., 2014, PP, (99), pp. 18.
    17. 17)
      • 67. Skea, J., Anderson, D., Green, T., et al: ‘Detection and correction of distorted current transformer current using wavelet transform and artificial intelligence’, IET Gener. Transm. Distrib., 2007, 2, (4), pp. 566575.
    18. 18)
      • 110. McDonald, J.D.: ‘Substation automation. IED integration and availability of information’, IEEE Power Energy Mag., 2003, 1, (2), pp. 2231.
    19. 19)
      • 97. Wan, H., Li, K.K., Wong, K.P.: ‘An adaptive multiagent approach to protection relay coordination with distributed generators in industrial power distribution system’, IEEE Trans. Ind. Appl., 2010, 46, (5), pp. 21182124.
    20. 20)
      • 158. Theisen, P.J., Krstic, S., Chen, G.: ‘270-V DC hybrid switch’, IEEE Trans. Comp. Hybrids Manuf. Technol., 1986, 9, (1), pp. 97100.
    21. 21)
      • 69. Tian, K.T.K., Liu, P.L.P.: ‘Improved operation of differential protection of power transformers for internal faults’, IEEE Trans. Power Deliv., 1992, 7, (4), pp. 19121919.
    22. 22)
      • 56. Wong, C., Lam, C., Lei, K., et al: ‘Novel wavelet approach to current differential pilot relay protection’, IEEE Trans. Power Deliv., 2003, 18, (1), pp. 2025.
    23. 23)
      • 160. Meyer, J.M., Rufer, A.: ‘A DC hybrid circuit breaker with ultra-fast contact opening and integrated gate-commutated thyristors (IGCTs)’, IEEE Trans. Power Deliv., 2006, 21, (2), pp. 646651.
    24. 24)
      • 36. Lin, X., Gao, Y., Liu, P.: ‘A novel scheme to identify symmetrical faults occurring during power swings’, IEEE Trans. Power Deliv., 2008, 23, (1), pp. 7378.
    25. 25)
      • 55. Skea, J., Anderson, D., Green, T., et al: ‘Phaselet-based current differential protection scheme based on transient capacitive current compensation’, IET Gener. Transm. Distrib., 2007, 2, (4), pp. 469477.
    26. 26)
      • 53. Coury, D., Thorp, J., Hopkinson, K.: ‘An agent-based current differential relay for use with a utility intranet’, IEEE Power Deliv., 2002, 17, (1), pp. 4753.
    27. 27)
      • 153. Shen, Z.J., Sabui, G., Miao, Z., et al: ‘Wide-bandgap solid-state circuit breakers for DC power systems: device and circuit considerations’, IEEE Trans. Electron Devices, 2015, 62, (2), pp. 294300.
    28. 28)
      • 13. Birla, D., Maheshwari, R.P., Gupta, H.O.: ‘Time-overcurrent relay coordination: a review’, Int. J. Emerg. Electr. Power Syst., 2005, 2, (2), pp. 113.
    29. 29)
      • 98. Tengdin, J., Westfall, R., Stephan, K., et al: ‘High impedance fault detection technology’, PSRC Working Group Members, Rep. PSRC Working Group D15, 1996.
    30. 30)
      • 77. Wang, Y., Zhang, P., Li, W., et al: ‘Online overvoltage prevention control of photovoltaic generators in microgrids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 20712078.
    31. 31)
      • 148. Meyer, C., De Doncker, R.W.: ‘LCC analysis of different resonant circuits and solid-state circuit breakers for medium-voltage grids’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 14141420.
    32. 32)
      • 152. Chow, T.P.: ‘Wide bandgap semiconductor power devices for energy efficient systems’. Proc. IEEE Workshop Wide Bandgap Power Devices Appl. (WiPDA), Blacksburg, USA, November 2015, pp. 402405.
    33. 33)
      • 109. Yazdanpanahi, H., Member, S., Li, Y.W., et al: ‘A new control strategy to mitigate the impact of inverter-based DGs on protection system’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 14271436.
    34. 34)
      • 140. Yuan, C., Haj-ahmed, M.A., Illindala, M.: ‘Protection strategies for medium voltage direct current microgrid at a remote area mine site’, IEEE Trans. Ind. Appl., 2015, 9994, (c), pp. 28462853.
    35. 35)
      • 128. Cuzner, R., Macfarlin, D., Clinger, D., et al: ‘Circuit breaker protection considerations in power converter-Fed DC systems’. Electric Ship Technologies Symp., Baltimore, USA, 2009, pp. 360367.
    36. 36)
      • 145. Dingermann, T., Zündorf, I.: ‘Circuit breaker technologies for advanced ship power systems’. IEEE Electric Ship Technologies Symp., Arlington, USA, 2007, pp. 201208.
    37. 37)
      • 81. Ustun, T.S., Ozansoy, C., Zayegh, A.: ‘Fault current coefficient and time delay assignment for microgrid protection system’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 598606.
    38. 38)
      • 4. Loh, P.C., Member, S., Li, D., et al: ‘Autonomous operation of hybrid microgrids with multiple AC and DC sub-grids’, IEEE Trans. Power Elecron., 2013, 28, (5), pp. 22142223.
    39. 39)
      • 26. Abdelaziz, A.Y., Talaat, H.E.A., Nosseir, A.I., et al: ‘An adaptive protection scheme for optimal coordination of overcurrent relays’, Electr. Power Syst. Res., 2002, 61, (1), pp. 19.
    40. 40)
      • 132. Kumar, D., Zare, F., Ghosh, A.: ‘DC microgrid technology: system architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects’, IEEE Access, 2017, 5, pp. 1223012256.
    41. 41)
      • 75. Bollen, M.H.J.: ‘Understanding Power Quality Problems: Voltage Sags and Interruptions’ (Wiley, New York, 2000).
    42. 42)
      • 8. Hooshyar, A., Iravani, R.: ‘Microgrid protection’, Proc. IEEE, 2017, 105, (7), pp. 13321353.
    43. 43)
      • 91. Kar, S., Samantaray, S.R.: ‘Time-frequency transform-based differential scheme for microgrid protection’, IET Gener. Transm. Distrib., 2014, 8, (2), pp. 310320.
    44. 44)
      • 90. Saleh, S.A., Member, S., Ahshan, R., et al: ‘Implementing and testing d–q WPT-based digital protection for microgrid systems’, IEEE Trans. Smart Grid, 2014, 50, (3), pp. 21732185.
    45. 45)
      • 63. Hooshyar, A., Sanaye-pasand, M., Member, S., et al: ‘Accurate measurement of fault currents contaminated with decaying DC offset and CT saturation’, IEEE Trans. Power Deliv., 2012, 27, (2), pp. 773783.
    46. 46)
      • 93. Using, I.M., Li, X., Member, S., et al: ‘Traveling wave-based protection scheme for mathematical morphology’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 22112218.
    47. 47)
      • 122. Cuzner, R.M., Venkataramanan, G.: ‘The status of DC micro-grid protection’. Industry Applications Society Annual Meeting, Edmonton, Canada, 2008, pp. 18.
    48. 48)
      • 149. Callanan, R., Das, M.K., Agarwal, A.K., et al: ‘Sic power devices for microgrids’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 28892896.
    49. 49)
      • 159. Tang, Y., Duarte, J.L., Smeets, R.P.P., et al: ‘Multi-stage DC hybrid switch with slow switching’. IECON Proc. (Industrial Electronics Conf.), Melbourne, Australia, 2011, pp. 14621467.
    50. 50)
      • 59. IEEE: ‘IEEE guide for protecting power transformers’, 2008.
    51. 51)
      • 113. Etherden, N., Vyatkin, V., Bollen, M.H.J.: ‘Virtual power plant for grid services using IEC 61850’, IEEE Trans. Ind. Inf., 2016, 12, (1), pp. 437447.
    52. 52)
      • 39. Brahma, S.M.: ‘Distance relay with out-of-step blocking function using wavelet transform’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 13601366.
    53. 53)
      • 51. Li, H.Y., Southern, E.P., Crossley, P.A.: ‘A new type of differential feeder relay using the global positioning system for data synchronization’, IEEE Trans. Power Deliv., 1997, 12, (3), pp. 10901099.
    54. 54)
      • 46. Xia, B., Member, S., Wang, Y., et al: ‘Estimation of fault resistance using fault record data’, IEEE Trans. Power Deliv., 2015, 30, (1), pp. 153160.
    55. 55)
      • 14. Zeienldin, H., El-Saadany, E.F., Salama, M.A.: ‘A novel problem formulation for directional overcurrent relay coordination’. 2004 Large Engineering Systems Conf. Power Engineering (IEEE Cat. No.04EX819), Halifax, Canada, 2004, pp. 4852.
    56. 56)
      • 130. Cuzner, R.M., Palaniappan, K., Sedano, W., et al: ‘Fault characterization and protective system design for a residential DC microgrid’. IEEE 6th Int. Conf. Renewable Energy Research and Applications (ICRERA), San Diego, USA, 2017, pp. 642647.
    57. 57)
      • 79. Hoseinzadeh, B., Faria da Silva, F.M., Bak, C.L.: ‘Adaptive tuning of frequency thresholds using voltage drop data in decentralized load shedding’, IEEE Trans. Power Syst., 2014, 30, (4), pp. 20552062.
    58. 58)
      • 9. Monadi, M., Zamani, M.A., Ignacio, J., et al: ‘Protection of AC and DC distribution systems embedding distributed energy resources: a comparative review and analysis’, Renew. Sustain. Energy Rev., 2015, 51, pp. 15781593.
    59. 59)
      • 73. Eissa, M.M., Member, S.: ‘A novel digital directional transformer protection technique based on wavelet packet’, IEEE Trans. Power Deliv., 2005, 20, (3), pp. 18301836.
    60. 60)
      • 154. Miao, Z., Sabui, G., Roshandeh, A.M., et al: ‘Design and analysis of DC solid-state circuit breakers using SiC JFETs’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (3), pp. 863873.
    61. 61)
      • 62. Ajaei, F.B., Sanaye-Pasand, M., Davarpanah, M., et al: ‘Compensation of the current-transformer saturation effects for digital relays’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 25312540.
    62. 62)
      • 95. Laaksonen, H., Ishchenko, D., Oudalov, A.: ‘Adaptive protection and microgrid control design for Hailuoto Island’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 14861493.
    63. 63)
      • 19. Ziegler, G.: ‘Numerical distance protection: principles and applications’, (John Wiley & Sons, USA, 2011, 4th edn.).
    64. 64)
      • 129. Palaniappan, K., Veerapeneni, S., Cuzner, R., et al: ‘Assessment of the feasibility of interconnected smart DC homes in a DC microgrid to reduce utility costs of low income households’. IEEE 2nd Int. Conf. Direct Current Microgrids, ICDCM 2017, Nuremberg, Germany, 2017, pp. 467473.
    65. 65)
      • 118. Meghwani, A., Srivastava, S.C., Chakrabarti, S.: ‘A non-unit protection scheme for DC microgrid based on local measurements’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 172181.
    66. 66)
      • 155. Shukla, A., Demetriades, G.D.: ‘A survey on hybrid circuit-breaker topologies’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 627641.
    67. 67)
      • 29. Mansour, M.M., Mekhamer, S.F., El-Kharbawe, N.E.S.: ‘A modified particle swarm optimizer for the coordination of directional overcurrent relays’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 14001410.
    68. 68)
      • 71. Tripathy, M., Maheshwari, R.P., Verma, H.K.: ‘Power transformer differential protection based on optimal probabilistic neural network’, IEEE Trans. Power Deliv., 2010, 25, (1), pp. 102112.
    69. 69)
      • 124. IEC 60364-1: ‘Low-voltage electrical installations – part 1: fundamental principles, assessment of general characteristics, definitions’, 2005.
    70. 70)
      • 127. Salomonsson, D., Member, S., Söder, L., et al: ‘Protection of low-voltage DC microgrids’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 10451053.
    71. 71)
      • 40. Zadeh, H.K., Li, Z.: ‘A novel power swing blocking scheme using adaptive neuro-fuzzy inference system’, Electr. Power Syst. Res., 2008, 78, (7), pp. 11381146.
    72. 72)
      • 167. IEC: ‘Standardization management board – SG4 LVDC distribution systems up to 1500 V DC’. 2009. Available at https://www.iec.ch/dyn/www/f?p=103:85:0::::FSP_ORG_ID:6019.
    73. 73)
      • 60. Stanbury, M., Djekic, Z.: ‘The impact of current-transformer saturation on transformer differential protection’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 12781287.
    74. 74)
      • 89. Mishra, D.P., Samantaray, S.R., Member, S., et al: ‘A combined wavelet and data-mining based intelligent protection scheme for microgrid’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 22952304.
    75. 75)
      • 17. Uthitsunthorn, D., Pao-la-or, P., Kulworawanichpong, T.: ‘Application of artificial bees colony algorithm for optimal overcurrent relay coordination problems’, Trans. Electr. Eng. Electron. Commun., 2012, 10, (1), pp. 98107.
    76. 76)
      • 20. Pradhan, A.K., Routray, A., Madhan Gudipalli, S.: ‘Fault direction estimation in radial distribution system using phase change in sequence current’, IEEE Trans. Power Deliv., 2007, 22, (4), pp. 20652071.
    77. 77)
      • 150. Millan, J., Godignon, P., Perpina, X., et al: ‘A survey of wide bandgap power semiconductor devices’, IEEE Trans. Power Electron., 2014, 29, (5), pp. 21552163.
    78. 78)
      • 7. Bayati, N., Hajizadeh, A., Soltani, M.: ‘Protection in DC microgrids: a comparative review’, IET Smart Grid, 2018, 1, (3), pp. 6675.
    79. 79)
      • 116. Saleh, K.A., Hooshyar, A., El-Saadany, E.F.: ‘Hybrid passive-overcurrent relay for detection of faults in low-voltage DC grids’, IEEE Trans. Smart Grid, 2015, 8, (3), pp. 110.
    80. 80)
      • 142. Zhan, H., Wang, C., Wang, Y., et al: ‘Relay Protection Coordination Integrated Optimal Placement and sizing of distributed generation sources in distribution networks’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 5565.
    81. 81)
      • 61. Skea, J., Anderson, D., Green, T., et al: ‘Influence of current transformer saturation on line current differential protection algorithms’, IET Gener. Transm. Distrib., 2007, 1, (2), pp. 270277.
    82. 82)
      • 134. Cuzner, R.M., Sielicki, T., Archibald, A.E., et al: ‘Management of ground faults in an ungrounded multi-terminal zonal DC distribution system with auctioneered loads’. IEEE Electric Ship Technologies Symp., Alexandria, USA, 2011, pp. 300305.
    83. 83)
      • 86. Habib, H.F., Lashway, C.R., Mohammed, O.A.: ‘A review of communication failure impacts on adaptive microgrid protection schemes and the use of energy storage as a contingency’, IEEE Trans. Ind. Appl., 2018, 54, (2), pp. 11941207.
    84. 84)
      • 70. Guzmán, A., Fischer, N., Labuschagne, C.: ‘Improvements in transformer protection and control’. 2009 62nd Annual Conf. Prot. Relay Eng., Austin, USA, 2009, pp. 563579.
    85. 85)
      • 18. Che, L., Khodayar, M.E., Shahidehpour, M.: ‘Adaptive protection system for microgrids: protection practices of a functional microgrid system’, IEEE Electrif. Mag., 2014, 2, (1), pp. 6680.
    86. 86)
      • 50. Rao, J.G., Pradhan, A.K.: ‘Differential power-based symmetrical fault detection during power swing’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 15571564.
    87. 87)
      • 100. Mamishev, A.V., Russell, B.D., Benner, C.L.: ‘Analysis of high impedance faults using fractal techniques’, IEEE Trans. Power Syst., 1996, 11, (1), pp. 435440.
    88. 88)
      • 131. Hirose, K., Tanaka, T., Babasaki, T., et al: ‘Grounding concept considerations and recommendations for 400VDC distribution system’. INTELEC, Int. Telecommunication Energy Conf., Amsterdam, Netherlands, 2011, pp. 18.
    89. 89)
      • 45. Zhong, Y., Kang, X., Jiao, Z., et al: ‘A novel distance protection algorithm for the phase-ground fault’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 17181725.
    90. 90)
      • 3. Lotfi, H., Khodaei, A.: ‘AC versus DC microgrid planning’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 296304.
    91. 91)
      • 16. Bashir, M., Taghizadeh, M., Sadeh, J., et al: ‘A new hybrid particle swarm optimization for optimal coordination of over current relay. 2010 Int. Conf. Power System Technology: Technological Innovations Mak. Power Grid Smarter, POWERCON2010, Hangzhou, China, 2010, pp. 16.
    92. 92)
      • 47. Sinclair, A., Finney, D., Martin, D., et al: ‘Distance protection in distribution systems: how it assists with integrating distributed resources’, IEEE Trans. Ind. Appl., 2014, 50, (3), pp. 21862196.
    93. 93)
      • 58. Ghanizadeh Bolandi, T., Seyedi, H., Hashemi, S.M., et al: ‘Impedance-differential protection: a new approach to transmission-line pilot protection’, IEEE Trans. Power Deliv., 2015, 8977, (c), pp. 25102518.
    94. 94)
      • 133. Paul, D.: ‘DC traction power system grounding’, IEEE Trans. Ind. Appl., 2002, 38, (3), pp. 818824.
    95. 95)
      • 163. Chen, Z., Yu, Z., Zhang, X., et al: ‘Analysis and experiments for IGBT, IEGT, and IGCT in hybrid DC circuit breaker’, IEEE Trans. Ind. Electron., 2018, 65, (4), pp. 28832892.
    96. 96)
      • 42. Eissa, M.M.: ‘Ground distance relay compensation based on fault resistance calculation’, IEEE Trans. Power Deliv., 2006, 21, (4), pp. 18301835.
    97. 97)
      • 101. Cui, T.C.T., Dong, X.D.X., Bo, Z.B.Z., et al: ‘Integrated scheme for high impedance fault detection in mv distribution system’. 2008 43rd Int. Univ. Power Eng. Conf., Bogota, Colombia, 2008, pp. 16.
    98. 98)
      • 99. Sedighizadeh, M., Rezazadeh, A., Elkalashy, N.I.: ‘Approaches in high impedance fault detection – a chronological review’, Adv. Electr. Comput. Eng., 2010, 10, (3), pp. 114128.
    99. 99)
      • 157. Holroyd, F.W., Temple, V.A.K.: ‘Power Semiconductor Devices for Hybrid Breakers’, IEEE Trans. Power Eng., 1982, PAS101, (7), pp. 21032108.
    100. 100)
      • 94. Piesciorovsky, E.C., Schulz, N.N.: ‘Fuse relay adaptive overcurrent protection scheme for microgrid with distributed generators’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 540549.
    101. 101)
      • 87. Yazdanpanahi, H., Li, Y.W., Xu, W.: ‘A new control strategy to mitigate the impact of inverter-based DGs on protection system’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 14271436.
    102. 102)
      • 105. Sheng, Y., Rovnyak, S.M.: ‘Decision tree-based methodology for high impedance fault detection’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 533536.
    103. 103)
      • 76. Beheshtaein, S.: ‘Application of wavelet-base method and DT in detection of ferroresonance from other transient phenomena’. Int. Symp. Innovations in Intelligent Systems and Applications (INISTA), Trabzon, Turkey, 2012, pp. 17.
    104. 104)
      • 123. Dragičević, T., Lu, X., Vasquez, J.C., et al: ‘DC microgrids – Part II: a review of power architectures, applications, and standardization issues’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 35283549.
    105. 105)
      • 137. Jia, K., Bi, T., Liu, B., et al: ‘Marine power distribution system fault location using a portable injection unit’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 818826.
    106. 106)
      • 82. Khadkikar, V., Pandi, V.R.: ‘A protection coordination index for evaluating distributed generation impacts on protection for meshed distribution systems’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 15231532.
    107. 107)
      • 48. El-Arroudi, K., Joos, G.: ‘Performance of interconnection protection based on distance relaying for wind power distributed generation’, IEEE Trans. Power Deliv., 2018, 33, (2), pp. 620629.
    108. 108)
      • 117. Monadi, M., Koch-ciobotaru, C., Luna, A., et al: ‘A protection strategy for fault detection and location for multi-terminal MVDC distribution systems with renewable energy systems’. International Conference on Renewable Energy Research and Application (ICRERA), Milwaukee, USA, 2014, pp. 496501.
    109. 109)
      • 25. IEEE Committee Report: ‘Computer representation of overcurrent relay characteristics’, IEEE Trans. Power Deliv., 1989, 4, (3), pp. 16591667.
    110. 110)
      • 108. Tsili, M., Papathanassiou, S.: ‘A review of grid code technical requirements for wind farms’, IET Renew. Power Gener., 2009, 3, (3), p. 308.
    111. 111)
      • 104. Jota, F.G., Jota, P.: ‘High-impedance fault identification using a fuzzy reasoning system’, IEE Proc., Gener. Transm. Distrib., 1998, 145, (November), p. 656.
    112. 112)
      • 54. Xu, Z.Y., Du, Z.Q., Ran, L., et al: ‘A current differential relay for a 1000-kV UHV transmission line’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 13921399.
    113. 113)
      • 161. Takeda, M., Hosokawa, Y., Yamamoto, H., et al: ‘A low loss solid-state transfer switch using hybrid switch devices’. Proc. - IPEMC 2000: 3rd Int. Power Electronics and Motion Control Conf., Beijing, China, 2000, pp. 235240.
    114. 114)
      • 141. Tang, L., Ooi, B.T.: ‘Locating and isolating DC faults in multi-terminal DC systems’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 18771884.
    115. 115)
      • 146. Meyer, C., Schröder, S., De Doncker, R.W.: ‘Solid-state circuit breakers and current limiters for medium-voltage systems having distributed power systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 13331340.
    116. 116)
      • 80. Laaksonen, H.J.: ‘Protection principles for future microgrids’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 29102918.
    117. 117)
      • 92. Beheshtaein, S., Savaghebi, M., Vasquez, J.C., et al: ‘A hybrid algorithm for fault locating in looped microgrids’. ECCE 2016 – IEEE Energy Conversion Congress and Exposition, Proc., 2016.
    118. 118)
      • 78. Velasco, D., Trujillo, C.L., Garcerá, G., et al: ‘Review of anti-islanding techniques in distributed generators’, Renew. Sustain. Energy Rev., 2010, 14, (6), pp. 16081614.
    119. 119)
      • 156. Peng, C., Huang, A.Q., Song, X.: ‘Current commutation in a medium voltage hybrid DC circuit breaker using 15 kV vacuum switch and SiC devices’. Conf. Proc. – IEEE Applied Power Electronics Conf. and Exposition – APEC, Charlotte, USA, 2015, pp. 22442250.
    120. 120)
      • 57. Zhang, L.L., Wu, Q.H., Ji, T.Y., et al: ‘Skewness-based differential protection scheme for EHV/UHV transmission lines’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 15181520.
    121. 121)
      • 6. Beheshtaein, S., Savaghebi, M., Vasquez, J.C., et al: ‘Protection of AC and DC microgrids: challenges, solutions and future trends’. Proc. 41th Annual Conf. IEEE Industrial Electronics Society (IECON), Yokohama, Japan, 2015, pp. 52535260.
    122. 122)
      • 49. Phadke, A.G., Thorp, J.S.: ‘Computer relaying for power systems’ (John Wiley & Sons, New York, 2009, 2nd edn).
    123. 123)
      • 121. Wang, J., Kadanak, P., Sumner, M., et al: ‘Active fault protection for an AC zonal marine power system architecture’. Conf. Rec. – IAS Annu. Meet. (IEEE Ind. Appl. Soc.), Edmonton, Canada, July 2008, 1, pp. 156166.
    124. 124)
      • 52. Villamagna, N., Crossley, P.A.: ‘A symmetrical component-based GPS signal failure-detection algorithm for use in feeder current differential protection’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 18211828.
    125. 125)
      • 66. Kang, Y.C., Lim, U.J., Kang, S.H., et al: ‘Compensation of the distortion in the secondary current caused by saturation and remanence in a CT’, IEEE Trans. Power Deliv., 2004, 19, (4), pp. 16421649.
    126. 126)
      • 111. IEC Std. 61850: ‘Communication networks and systems in substations’, 2003.
    127. 127)
      • 119. Emhemed, A.A.S., Burt, G.M.: ‘An advanced protection scheme for enabling an LVDC last mile distribution network’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 26022609.
    128. 128)
      • 1. Ton, D.T., Smith, M.A.: ‘The U.S. Department of energy's microgrid initiative’, Electr. J., 2012, 25, (8), pp. 8494.
    129. 129)
      • 37. Jafari, R., Moaddabi, N., Gharehpetian, G.B., et al: ‘A novel power swing detection scheme independent of the rate of change of power system parameters’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 11921202.
    130. 130)
      • 44. Liu, Q., Huang, S.: ‘Adaptive impedance relay with composite polarizing voltage against fault resistance’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 586592.
    131. 131)
      • 162. Kishida, Y., Koyama, K., Sasao, H., et al: ‘Development of the high speed switch and its application’. Proc. IEEE 33rd Ind. Appl. Conf., St. Louis, USA, 1998, pp. 23212328.
    132. 132)
      • 164. Wen, W., Huang, Y., Sun, Y., et al: ‘Research on current commutation measures for hybrid DC circuit breakers’, IEEE Trans. Power Deliv., 2016, 31, (4), pp. 14561463.
    133. 133)
      • 85. Beheshtaein, S., Savaghebi, M., Guerrero, J.M., et al: ‘A secondary-control based fault current limiter for four-wire three phase inverter-interfaced DGs’. 43rd Annual Conf. IEEE Industrial Electronics Society, Beijing, China, 2016, pp. 23632368.
    134. 134)
      • 96. Coffele, F., Booth, C., Dysko, A.: ‘An adaptive overcurrent protection scheme for distribution networks’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 561568.
    135. 135)
      • 166. IEEE Std. 946-2004: ‘IEEE recommended practice for the design of DC auxiliary power systems for generating Stations’, 2004.
    136. 136)
      • 10. Mirsaeidi, S., Dong, X., Said, D.M.: ‘Towards hybrid AC/DC microgrids: critical analysis and classification of protection strategies’, Renew. Sustain. Energy Rev., 2018, 90, pp. 97103.
    137. 137)
      • 72. Wiszniewski, A., Kasztenny, B.: ‘A multi-criteria differential transformer relay based on fuzzy logic’, IEEE Trans. Power Deliv., 1995, 10, (4), pp. 17861792.
    138. 138)
      • 34. Khorashadi-Zadeh, H.: ‘Evaluation and performance comparison of power swing detection algorithms’. IEEE Power and Energy Society General Meeting 2005, San Francisco, USA, June 2005, pp. 976982.
    139. 139)
      • 126. Mohammadi, J., Ajaei, F.B., Stevens, G.: ‘DC microgrid grounding strategies’. IAS 54th Industrial and Commercial Power Systems Technical Conf. (I&CPS), Niagara Falls, Canada, 2018, pp. 16.
    140. 140)
      • 120. Emhemed, A.A.S., Fong, K., Fletcher, S., et al: ‘Validation of fast and selective protection scheme for an LVDC distribution network’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 14321440.
    141. 141)
      • 24. Albrecht M, R.E., Nisja W, J., Feero G, E., et al: ‘‘Digital computer protective device coordination program, part I. G. Program description’, IEEE Trans. Power Appar. Syst., 1964, PAS-83, (4), pp. 402410.
    142. 142)
      • 35. Guorong, S.: ‘A new theory on distinguish swing and fault’, Autom. Electr. Power Syst., 1990, 14, (1), pp. 28.
    143. 143)
      • 65. Segatto, Ê.C., Coury, D.V.: ‘A differential relay for power transformers using intelligent tools’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 11541162.
    144. 144)
      • 68. Vazquez, E., Mijares, I.I., Chacon, O.L., et al: ‘Transformer differential protection using principal component analysis’, IEEE Trans. Power Deliv., 2008, 23, (1), pp. 6772.
    145. 145)
      • 102. Elkalashy, N.I., Lehtonen, M., Darwish, H.A., et al: ‘DWT-based detection and transient power direction-based location of high-impedance faults due to leaning trees in unearthed MV networks’, IEEE Trans. Power Deliv., 2008, 23, (1), pp. 94101.
    146. 146)
      • 31. Noghabi, A.S., Mashhadi, H.R., Sadeh, J.: ‘Optimal coordination of directional overcurrent relays considering different network topologies using interval linear programming’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 13481354.
    147. 147)
      • 143. Brozek, J.P.: ‘DC overcurrent protection-where we stand’, IEEE Trans. Ind. Appl., 1993, 29, (5), pp. 10291032.
    148. 148)
      • 28. Abyaneh, H.A., Al-Dabbagh, M., Karegar, H.K., et al: ‘A new optimal approach for coordination of overcurrent relays in interconnected power systems’, IEEE Trans. Power Deliv., 2003, 18, (2), pp. 430435.
    149. 149)
      • 138. Liu, C.W., Lin, T.C., Yu, C.S., et al: ‘A fault location technique for two-terminal multisection compound transmission lines using synchronized phasor measurements’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 113121.
    150. 150)
      • 15. Noghabi, A.S., Sadeh, J., Mashhadi, H.R.: ‘Considering different network topologies in optimal overcurrent relay coordination using a hybrid GA’, IEEE Trans. Power Deliv., 2009, 24, (4), pp. 18571863.
    151. 151)
      • 64. Khorashadi-Zadeh, H., Sanaye-Pasand, M.: ‘Correction of saturated current transformers secondary current using ANNs’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 7379.
    152. 152)
      • 43. Filomena, A. D., Salim, R.H., Resener, M., et al: ‘Ground distance relaying with fault-resistance compensation for unbalanced systems’, IEEE Trans. Power Deliv., 2008, 23, (3), pp. 13191326.
    153. 153)
      • 5. Kakigano, H., Miura, Y., Ise, T.: ‘Low-voltage bipolar-type DC microgrid for super high quality distribution’, IEEE Trans. Power Elecron., 2010, 25, (12), pp. 30663075.
    154. 154)
      • 32. Mason, C.R.: ‘The art & science of protective relaying’, 1956.
    155. 155)
      • 33. Horowitz, S.H., Phadke, A.G.: ‘Third zone revisited’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 2329.
    156. 156)
      • 84. El-Khattam, W., Sidhu, T.S.: ‘Restoration of directional overcurrent relay coordination in distributed generation systems utilizing fault current limiter’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 576585.
    157. 157)
      • 147. Meyer, C., De Doncker, R.W.: ‘Solid-state circuit breaker based on active thyristor topologies’, IEEE Trans. Power Electron., 2006, 21, (2), pp. 450458.
    158. 158)
      • 23. Sharifian, H., Abyaneh, H.A., Salman, S.K., et al: ‘Determination of the minimum break point set using expert system and genetic algorithm’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 12841295.
    159. 159)
      • 139. Fletcher, S.D.A., Norman, P.J., Fong, K., et al: ‘High-speed differential protection for smart DC distribution systems’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 26102617.
    160. 160)
      • 136. Christopher, E., Sumner, M., Thomas, D.W.P., et al: ‘Fault location in a zonal DC marine power system using active impedance estimation’, IEEE Trans. Ind. Appl., 2013, 49, (2), pp. 860865.
    161. 161)
      • 2. Parhizi, S., Lotfi, H., Khodaei, A., et al: ‘State of the art in research on microgrids: a review’, IEEE Access, 2015, 3, pp. 890925.
    162. 162)
      • 107. Milioudis, A.N., Andreou, G.T., Labridis, D.P.: ‘Enhanced protection scheme for smart grids using power line communications techniques – Part II: location of high impedance fault position’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 16311640.
    163. 163)
      • 12. Benmouyal, G., Meisinger, M., Elmore, W.A., et al: ‘IEEE standard inverse-time characteristic equations for overcurrent relays’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 868872.
    164. 164)
      • 88. Piya, P., Ebrahimi, M., Karimi-Ghartemani, M., et al: ‘Fault ride-through capability of voltage-controlled inverters’, IEEE Trans. Ind. Electron., 2018, 65, (10), pp. 79337943.
    165. 165)
      • 38. Lotfifard, S., Member, S., Faiz, J., et al: ‘Detection of symmetrical faults by distance relays during power swings’, IEEE Trans. Power Deliv., 2010, 25, (1), pp. 8187.
    166. 166)
      • 114. Baran, E., Mahajan, R.: ‘Overcurrent protection on voltage-source-converter- based multiterminal DC distribution systems’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 406412.
    167. 167)
      • 11. Grid, A.: ‘Network protection and automation guide – protective relays, measurement & control’, 2011.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5212
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5212
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address