http://iet.metastore.ingenta.com
1887

Review on microgrids protection

Review on microgrids protection

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Microgrid, which is one of the main foundations of the future grid, inherits many properties of the smart grid such as, self-healing capability, real-time monitoring, advanced two-way communication systems, low voltage ride through capability of distributed generator (DG) units, and high penetration of DGs. These substantial changes in properties and capabilities of the future grid result in significant protection challenges such as bidirectional fault current, various levels of fault current under different operating conditions, necessity of standards for automation system, cyber security issues, as well as, designing an appropriate grounding system, fast fault detection/location method, the need for an efficient circuit breaker for DC microgrids. Due to these new challenges in microgrid protection, the conventional protection strategies have to be either modified or substituted with new ones. This study aims to provide a comprehensive review of the protection challenges in AC and DC microgrids and available solutions to deal with them. Future trends in microgrid protection are also briefly discussed.

References

    1. 1)
      • 1. Ton, D.T., Smith, M.A.: ‘The U.S. Department of energy's microgrid initiative’, Electr. J., 2012, 25, (8), pp. 8494.
    2. 2)
      • 2. Parhizi, S., Lotfi, H., Khodaei, A., et al: ‘State of the art in research on microgrids: a review’, IEEE Access, 2015, 3, pp. 890925.
    3. 3)
      • 3. Lotfi, H., Khodaei, A.: ‘AC versus DC microgrid planning’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 296304.
    4. 4)
      • 4. Loh, P.C., Member, S., Li, D., et al: ‘Autonomous operation of hybrid microgrids with multiple AC and DC sub-grids’, IEEE Trans. Power Elecron., 2013, 28, (5), pp. 22142223.
    5. 5)
      • 5. Kakigano, H., Miura, Y., Ise, T.: ‘Low-voltage bipolar-type DC microgrid for super high quality distribution’, IEEE Trans. Power Elecron., 2010, 25, (12), pp. 30663075.
    6. 6)
      • 6. Beheshtaein, S., Savaghebi, M., Vasquez, J.C., et al: ‘Protection of AC and DC microgrids: challenges, solutions and future trends’. Proc. 41th Annual Conf. IEEE Industrial Electronics Society (IECON), Yokohama, Japan, 2015, pp. 52535260.
    7. 7)
      • 7. Bayati, N., Hajizadeh, A., Soltani, M.: ‘Protection in DC microgrids: a comparative review’, IET Smart Grid, 2018, 1, (3), pp. 6675.
    8. 8)
      • 8. Hooshyar, A., Iravani, R.: ‘Microgrid protection’, Proc. IEEE, 2017, 105, (7), pp. 13321353.
    9. 9)
      • 9. Monadi, M., Zamani, M.A., Ignacio, J., et al: ‘Protection of AC and DC distribution systems embedding distributed energy resources: a comparative review and analysis’, Renew. Sustain. Energy Rev., 2015, 51, pp. 15781593.
    10. 10)
      • 10. Mirsaeidi, S., Dong, X., Said, D.M.: ‘Towards hybrid AC/DC microgrids: critical analysis and classification of protection strategies’, Renew. Sustain. Energy Rev., 2018, 90, pp. 97103.
    11. 11)
      • 11. Grid, A.: ‘Network protection and automation guide – protective relays, measurement & control’, 2011.
    12. 12)
      • 12. Benmouyal, G., Meisinger, M., Elmore, W.A., et al: ‘IEEE standard inverse-time characteristic equations for overcurrent relays’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 868872.
    13. 13)
      • 13. Birla, D., Maheshwari, R.P., Gupta, H.O.: ‘Time-overcurrent relay coordination: a review’, Int. J. Emerg. Electr. Power Syst., 2005, 2, (2), pp. 113.
    14. 14)
      • 14. Zeienldin, H., El-Saadany, E.F., Salama, M.A.: ‘A novel problem formulation for directional overcurrent relay coordination’. 2004 Large Engineering Systems Conf. Power Engineering (IEEE Cat. No.04EX819), Halifax, Canada, 2004, pp. 4852.
    15. 15)
      • 15. Noghabi, A.S., Sadeh, J., Mashhadi, H.R.: ‘Considering different network topologies in optimal overcurrent relay coordination using a hybrid GA’, IEEE Trans. Power Deliv., 2009, 24, (4), pp. 18571863.
    16. 16)
      • 16. Bashir, M., Taghizadeh, M., Sadeh, J., et al: ‘A new hybrid particle swarm optimization for optimal coordination of over current relay. 2010 Int. Conf. Power System Technology: Technological Innovations Mak. Power Grid Smarter, POWERCON2010, Hangzhou, China, 2010, pp. 16.
    17. 17)
      • 17. Uthitsunthorn, D., Pao-la-or, P., Kulworawanichpong, T.: ‘Application of artificial bees colony algorithm for optimal overcurrent relay coordination problems’, Trans. Electr. Eng. Electron. Commun., 2012, 10, (1), pp. 98107.
    18. 18)
      • 18. Che, L., Khodayar, M.E., Shahidehpour, M.: ‘Adaptive protection system for microgrids: protection practices of a functional microgrid system’, IEEE Electrif. Mag., 2014, 2, (1), pp. 6680.
    19. 19)
      • 19. Ziegler, G.: ‘Numerical distance protection: principles and applications’, (John Wiley & Sons, USA, 2011, 4th edn.).
    20. 20)
      • 20. Pradhan, A.K., Routray, A., Madhan Gudipalli, S.: ‘Fault direction estimation in radial distribution system using phase change in sequence current’, IEEE Trans. Power Deliv., 2007, 22, (4), pp. 20652071.
    21. 21)
      • 21. Jalilian, A., Hagh, M.T., Hashemi, S.M.: ‘An innovative directional relaying scheme based on postfault current’, IEEE Trans. Power Deliv., 2014, PP, (99), pp. 18.
    22. 22)
      • 22. Knable, H.: ‘A standardized approach to relay coordination’. IEEE Winter Power Meeting, New York, USA, 1969.
    23. 23)
      • 23. Sharifian, H., Abyaneh, H.A., Salman, S.K., et al: ‘Determination of the minimum break point set using expert system and genetic algorithm’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 12841295.
    24. 24)
      • 24. Albrecht M, R.E., Nisja W, J., Feero G, E., et al: ‘‘Digital computer protective device coordination program, part I. G. Program description’, IEEE Trans. Power Appar. Syst., 1964, PAS-83, (4), pp. 402410.
    25. 25)
      • 25. IEEE Committee Report: ‘Computer representation of overcurrent relay characteristics’, IEEE Trans. Power Deliv., 1989, 4, (3), pp. 16591667.
    26. 26)
      • 26. Abdelaziz, A.Y., Talaat, H.E.A., Nosseir, A.I., et al: ‘An adaptive protection scheme for optimal coordination of overcurrent relays’, Electr. Power Syst. Res., 2002, 61, (1), pp. 19.
    27. 27)
      • 27. Amraee, T.: ‘Coordination of directional overcurrent relays using seeker algorithm’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 14151422.
    28. 28)
      • 28. Abyaneh, H.A., Al-Dabbagh, M., Karegar, H.K., et al: ‘A new optimal approach for coordination of overcurrent relays in interconnected power systems’, IEEE Trans. Power Deliv., 2003, 18, (2), pp. 430435.
    29. 29)
      • 29. Mansour, M.M., Mekhamer, S.F., El-Kharbawe, N.E.S.: ‘A modified particle swarm optimizer for the coordination of directional overcurrent relays’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 14001410.
    30. 30)
      • 30. Singh, M., Panigrahi, B.K., Abhyankar, A.R., et al: ‘Optimal coordination of directional over-current relays using teaching learning-based optimization (TLBO) algorithm’, Electr. Power Energy Syst., 2013, 50, pp. 3341.
    31. 31)
      • 31. Noghabi, A.S., Mashhadi, H.R., Sadeh, J.: ‘Optimal coordination of directional overcurrent relays considering different network topologies using interval linear programming’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 13481354.
    32. 32)
      • 32. Mason, C.R.: ‘The art & science of protective relaying’, 1956.
    33. 33)
      • 33. Horowitz, S.H., Phadke, A.G.: ‘Third zone revisited’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 2329.
    34. 34)
      • 34. Khorashadi-Zadeh, H.: ‘Evaluation and performance comparison of power swing detection algorithms’. IEEE Power and Energy Society General Meeting 2005, San Francisco, USA, June 2005, pp. 976982.
    35. 35)
      • 35. Guorong, S.: ‘A new theory on distinguish swing and fault’, Autom. Electr. Power Syst., 1990, 14, (1), pp. 28.
    36. 36)
      • 36. Lin, X., Gao, Y., Liu, P.: ‘A novel scheme to identify symmetrical faults occurring during power swings’, IEEE Trans. Power Deliv., 2008, 23, (1), pp. 7378.
    37. 37)
      • 37. Jafari, R., Moaddabi, N., Gharehpetian, G.B., et al: ‘A novel power swing detection scheme independent of the rate of change of power system parameters’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 11921202.
    38. 38)
      • 38. Lotfifard, S., Member, S., Faiz, J., et al: ‘Detection of symmetrical faults by distance relays during power swings’, IEEE Trans. Power Deliv., 2010, 25, (1), pp. 8187.
    39. 39)
      • 39. Brahma, S.M.: ‘Distance relay with out-of-step blocking function using wavelet transform’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 13601366.
    40. 40)
      • 40. Zadeh, H.K., Li, Z.: ‘A novel power swing blocking scheme using adaptive neuro-fuzzy inference system’, Electr. Power Syst. Res., 2008, 78, (7), pp. 11381146.
    41. 41)
      • 41. Sarwade, A.N., Katti, P.K., Ghodekar, J.G.: ‘Adaptive solutions for distance relay settings’. 2010 9th Int. Power Energy Conf., IPEC 2010, Singapore, Singapore, 2010, pp. 493498.
    42. 42)
      • 42. Eissa, M.M.: ‘Ground distance relay compensation based on fault resistance calculation’, IEEE Trans. Power Deliv., 2006, 21, (4), pp. 18301835.
    43. 43)
      • 43. Filomena, A. D., Salim, R.H., Resener, M., et al: ‘Ground distance relaying with fault-resistance compensation for unbalanced systems’, IEEE Trans. Power Deliv., 2008, 23, (3), pp. 13191326.
    44. 44)
      • 44. Liu, Q., Huang, S.: ‘Adaptive impedance relay with composite polarizing voltage against fault resistance’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 586592.
    45. 45)
      • 45. Zhong, Y., Kang, X., Jiao, Z., et al: ‘A novel distance protection algorithm for the phase-ground fault’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 17181725.
    46. 46)
      • 46. Xia, B., Member, S., Wang, Y., et al: ‘Estimation of fault resistance using fault record data’, IEEE Trans. Power Deliv., 2015, 30, (1), pp. 153160.
    47. 47)
      • 47. Sinclair, A., Finney, D., Martin, D., et al: ‘Distance protection in distribution systems: how it assists with integrating distributed resources’, IEEE Trans. Ind. Appl., 2014, 50, (3), pp. 21862196.
    48. 48)
      • 48. El-Arroudi, K., Joos, G.: ‘Performance of interconnection protection based on distance relaying for wind power distributed generation’, IEEE Trans. Power Deliv., 2018, 33, (2), pp. 620629.
    49. 49)
      • 49. Phadke, A.G., Thorp, J.S.: ‘Computer relaying for power systems’ (John Wiley & Sons, New York, 2009, 2nd edn).
    50. 50)
      • 50. Rao, J.G., Pradhan, A.K.: ‘Differential power-based symmetrical fault detection during power swing’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 15571564.
    51. 51)
      • 51. Li, H.Y., Southern, E.P., Crossley, P.A.: ‘A new type of differential feeder relay using the global positioning system for data synchronization’, IEEE Trans. Power Deliv., 1997, 12, (3), pp. 10901099.
    52. 52)
      • 52. Villamagna, N., Crossley, P.A.: ‘A symmetrical component-based GPS signal failure-detection algorithm for use in feeder current differential protection’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 18211828.
    53. 53)
      • 53. Coury, D., Thorp, J., Hopkinson, K.: ‘An agent-based current differential relay for use with a utility intranet’, IEEE Power Deliv., 2002, 17, (1), pp. 4753.
    54. 54)
      • 54. Xu, Z.Y., Du, Z.Q., Ran, L., et al: ‘A current differential relay for a 1000-kV UHV transmission line’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 13921399.
    55. 55)
      • 55. Skea, J., Anderson, D., Green, T., et al: ‘Phaselet-based current differential protection scheme based on transient capacitive current compensation’, IET Gener. Transm. Distrib., 2007, 2, (4), pp. 469477.
    56. 56)
      • 56. Wong, C., Lam, C., Lei, K., et al: ‘Novel wavelet approach to current differential pilot relay protection’, IEEE Trans. Power Deliv., 2003, 18, (1), pp. 2025.
    57. 57)
      • 57. Zhang, L.L., Wu, Q.H., Ji, T.Y., et al: ‘Skewness-based differential protection scheme for EHV/UHV transmission lines’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 15181520.
    58. 58)
      • 58. Ghanizadeh Bolandi, T., Seyedi, H., Hashemi, S.M., et al: ‘Impedance-differential protection: a new approach to transmission-line pilot protection’, IEEE Trans. Power Deliv., 2015, 8977, (c), pp. 25102518.
    59. 59)
      • 59. IEEE: ‘IEEE guide for protecting power transformers’, 2008.
    60. 60)
      • 60. Stanbury, M., Djekic, Z.: ‘The impact of current-transformer saturation on transformer differential protection’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 12781287.
    61. 61)
      • 61. Skea, J., Anderson, D., Green, T., et al: ‘Influence of current transformer saturation on line current differential protection algorithms’, IET Gener. Transm. Distrib., 2007, 1, (2), pp. 270277.
    62. 62)
      • 62. Ajaei, F.B., Sanaye-Pasand, M., Davarpanah, M., et al: ‘Compensation of the current-transformer saturation effects for digital relays’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 25312540.
    63. 63)
      • 63. Hooshyar, A., Sanaye-pasand, M., Member, S., et al: ‘Accurate measurement of fault currents contaminated with decaying DC offset and CT saturation’, IEEE Trans. Power Deliv., 2012, 27, (2), pp. 773783.
    64. 64)
      • 64. Khorashadi-Zadeh, H., Sanaye-Pasand, M.: ‘Correction of saturated current transformers secondary current using ANNs’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 7379.
    65. 65)
      • 65. Segatto, Ê.C., Coury, D.V.: ‘A differential relay for power transformers using intelligent tools’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 11541162.
    66. 66)
      • 66. Kang, Y.C., Lim, U.J., Kang, S.H., et al: ‘Compensation of the distortion in the secondary current caused by saturation and remanence in a CT’, IEEE Trans. Power Deliv., 2004, 19, (4), pp. 16421649.
    67. 67)
      • 67. Skea, J., Anderson, D., Green, T., et al: ‘Detection and correction of distorted current transformer current using wavelet transform and artificial intelligence’, IET Gener. Transm. Distrib., 2007, 2, (4), pp. 566575.
    68. 68)
      • 68. Vazquez, E., Mijares, I.I., Chacon, O.L., et al: ‘Transformer differential protection using principal component analysis’, IEEE Trans. Power Deliv., 2008, 23, (1), pp. 6772.
    69. 69)
      • 69. Tian, K.T.K., Liu, P.L.P.: ‘Improved operation of differential protection of power transformers for internal faults’, IEEE Trans. Power Deliv., 1992, 7, (4), pp. 19121919.
    70. 70)
      • 70. Guzmán, A., Fischer, N., Labuschagne, C.: ‘Improvements in transformer protection and control’. 2009 62nd Annual Conf. Prot. Relay Eng., Austin, USA, 2009, pp. 563579.
    71. 71)
      • 71. Tripathy, M., Maheshwari, R.P., Verma, H.K.: ‘Power transformer differential protection based on optimal probabilistic neural network’, IEEE Trans. Power Deliv., 2010, 25, (1), pp. 102112.
    72. 72)
      • 72. Wiszniewski, A., Kasztenny, B.: ‘A multi-criteria differential transformer relay based on fuzzy logic’, IEEE Trans. Power Deliv., 1995, 10, (4), pp. 17861792.
    73. 73)
      • 73. Eissa, M.M., Member, S.: ‘A novel digital directional transformer protection technique based on wavelet packet’, IEEE Trans. Power Deliv., 2005, 20, (3), pp. 18301836.
    74. 74)
      • 74. Dashti, H., Sanaye-pasand, M.: ‘Power transformer protection using a multiregion adaptive differential relay’, IEEE Trans. Power Deliv., 2014, 29, (2), pp. 777785.
    75. 75)
      • 75. Bollen, M.H.J.: ‘Understanding Power Quality Problems: Voltage Sags and Interruptions’ (Wiley, New York, 2000).
    76. 76)
      • 76. Beheshtaein, S.: ‘Application of wavelet-base method and DT in detection of ferroresonance from other transient phenomena’. Int. Symp. Innovations in Intelligent Systems and Applications (INISTA), Trabzon, Turkey, 2012, pp. 17.
    77. 77)
      • 77. Wang, Y., Zhang, P., Li, W., et al: ‘Online overvoltage prevention control of photovoltaic generators in microgrids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 20712078.
    78. 78)
      • 78. Velasco, D., Trujillo, C.L., Garcerá, G., et al: ‘Review of anti-islanding techniques in distributed generators’, Renew. Sustain. Energy Rev., 2010, 14, (6), pp. 16081614.
    79. 79)
      • 79. Hoseinzadeh, B., Faria da Silva, F.M., Bak, C.L.: ‘Adaptive tuning of frequency thresholds using voltage drop data in decentralized load shedding’, IEEE Trans. Power Syst., 2014, 30, (4), pp. 20552062.
    80. 80)
      • 80. Laaksonen, H.J.: ‘Protection principles for future microgrids’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 29102918.
    81. 81)
      • 81. Ustun, T.S., Ozansoy, C., Zayegh, A.: ‘Fault current coefficient and time delay assignment for microgrid protection system’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 598606.
    82. 82)
      • 82. Khadkikar, V., Pandi, V.R.: ‘A protection coordination index for evaluating distributed generation impacts on protection for meshed distribution systems’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 15231532.
    83. 83)
      • 83. Jo, H., Joo, S., Lee, K.: ‘Optimal placement of superconducting fault current limiters (SFCLs) for protection of an electric power system with distributed generations (DGs)’, IEEE Trans. Appl. Supercond., 2013, 23, (3), pp. 36.
    84. 84)
      • 84. El-Khattam, W., Sidhu, T.S.: ‘Restoration of directional overcurrent relay coordination in distributed generation systems utilizing fault current limiter’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 576585.
    85. 85)
      • 85. Beheshtaein, S., Savaghebi, M., Guerrero, J.M., et al: ‘A secondary-control based fault current limiter for four-wire three phase inverter-interfaced DGs’. 43rd Annual Conf. IEEE Industrial Electronics Society, Beijing, China, 2016, pp. 23632368.
    86. 86)
      • 86. Habib, H.F., Lashway, C.R., Mohammed, O.A.: ‘A review of communication failure impacts on adaptive microgrid protection schemes and the use of energy storage as a contingency’, IEEE Trans. Ind. Appl., 2018, 54, (2), pp. 11941207.
    87. 87)
      • 87. Yazdanpanahi, H., Li, Y.W., Xu, W.: ‘A new control strategy to mitigate the impact of inverter-based DGs on protection system’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 14271436.
    88. 88)
      • 88. Piya, P., Ebrahimi, M., Karimi-Ghartemani, M., et al: ‘Fault ride-through capability of voltage-controlled inverters’, IEEE Trans. Ind. Electron., 2018, 65, (10), pp. 79337943.
    89. 89)
      • 89. Mishra, D.P., Samantaray, S.R., Member, S., et al: ‘A combined wavelet and data-mining based intelligent protection scheme for microgrid’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 22952304.
    90. 90)
      • 90. Saleh, S.A., Member, S., Ahshan, R., et al: ‘Implementing and testing d–q WPT-based digital protection for microgrid systems’, IEEE Trans. Smart Grid, 2014, 50, (3), pp. 21732185.
    91. 91)
      • 91. Kar, S., Samantaray, S.R.: ‘Time-frequency transform-based differential scheme for microgrid protection’, IET Gener. Transm. Distrib., 2014, 8, (2), pp. 310320.
    92. 92)
      • 92. Beheshtaein, S., Savaghebi, M., Vasquez, J.C., et al: ‘A hybrid algorithm for fault locating in looped microgrids’. ECCE 2016 – IEEE Energy Conversion Congress and Exposition, Proc., 2016.
    93. 93)
      • 93. Using, I.M., Li, X., Member, S., et al: ‘Traveling wave-based protection scheme for mathematical morphology’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 22112218.
    94. 94)
      • 94. Piesciorovsky, E.C., Schulz, N.N.: ‘Fuse relay adaptive overcurrent protection scheme for microgrid with distributed generators’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 540549.
    95. 95)
      • 95. Laaksonen, H., Ishchenko, D., Oudalov, A.: ‘Adaptive protection and microgrid control design for Hailuoto Island’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 14861493.
    96. 96)
      • 96. Coffele, F., Booth, C., Dysko, A.: ‘An adaptive overcurrent protection scheme for distribution networks’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 561568.
    97. 97)
      • 97. Wan, H., Li, K.K., Wong, K.P.: ‘An adaptive multiagent approach to protection relay coordination with distributed generators in industrial power distribution system’, IEEE Trans. Ind. Appl., 2010, 46, (5), pp. 21182124.
    98. 98)
      • 98. Tengdin, J., Westfall, R., Stephan, K., et al: ‘High impedance fault detection technology’, PSRC Working Group Members, Rep. PSRC Working Group D15, 1996.
    99. 99)
      • 99. Sedighizadeh, M., Rezazadeh, A., Elkalashy, N.I.: ‘Approaches in high impedance fault detection – a chronological review’, Adv. Electr. Comput. Eng., 2010, 10, (3), pp. 114128.
    100. 100)
      • 100. Mamishev, A.V., Russell, B.D., Benner, C.L.: ‘Analysis of high impedance faults using fractal techniques’, IEEE Trans. Power Syst., 1996, 11, (1), pp. 435440.
    101. 101)
      • 101. Cui, T.C.T., Dong, X.D.X., Bo, Z.B.Z., et al: ‘Integrated scheme for high impedance fault detection in mv distribution system’. 2008 43rd Int. Univ. Power Eng. Conf., Bogota, Colombia, 2008, pp. 16.
    102. 102)
      • 102. Elkalashy, N.I., Lehtonen, M., Darwish, H.A., et al: ‘DWT-based detection and transient power direction-based location of high-impedance faults due to leaning trees in unearthed MV networks’, IEEE Trans. Power Deliv., 2008, 23, (1), pp. 94101.
    103. 103)
      • 103. Michalik, M., Lukowicz, M., Rabizant, W., et al: ‘New ANN-based algorithms for detecting HIFs in multigrounded MV networks’, IEEE Trans. Power Deliv., 2008, 23, (1), pp. 5866.
    104. 104)
      • 104. Jota, F.G., Jota, P.: ‘High-impedance fault identification using a fuzzy reasoning system’, IEE Proc., Gener. Transm. Distrib., 1998, 145, (November), p. 656.
    105. 105)
      • 105. Sheng, Y., Rovnyak, S.M.: ‘Decision tree-based methodology for high impedance fault detection’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 533536.
    106. 106)
      • 106. Sarlak, M., Shahrtash, S.M.: ‘High impedance fault detection in distribution networks using support vector machines based on wavelet transform’. 2008 IEEE Canada Electr. Power Conf., Vancouver, Canada, 2008, pp. 16.
    107. 107)
      • 107. Milioudis, A.N., Andreou, G.T., Labridis, D.P.: ‘Enhanced protection scheme for smart grids using power line communications techniques – Part II: location of high impedance fault position’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 16311640.
    108. 108)
      • 108. Tsili, M., Papathanassiou, S.: ‘A review of grid code technical requirements for wind farms’, IET Renew. Power Gener., 2009, 3, (3), p. 308.
    109. 109)
      • 109. Yazdanpanahi, H., Member, S., Li, Y.W., et al: ‘A new control strategy to mitigate the impact of inverter-based DGs on protection system’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 14271436.
    110. 110)
      • 110. McDonald, J.D.: ‘Substation automation. IED integration and availability of information’, IEEE Power Energy Mag., 2003, 1, (2), pp. 2231.
    111. 111)
      • 111. IEC Std. 61850: ‘Communication networks and systems in substations’, 2003.
    112. 112)
      • 112. Mazur, D.C., Kreiter, J.H., Rourke, M.E., et al: ‘Developing protective relay faceplates: taking advantage of the benefits of IEC 61850’, IEEE Ind. Appl. Mag., 2015, 21, (1), pp. 3340.
    113. 113)
      • 113. Etherden, N., Vyatkin, V., Bollen, M.H.J.: ‘Virtual power plant for grid services using IEC 61850’, IEEE Trans. Ind. Inf., 2016, 12, (1), pp. 437447.
    114. 114)
      • 114. Baran, E., Mahajan, R.: ‘Overcurrent protection on voltage-source-converter- based multiterminal DC distribution systems’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 406412.
    115. 115)
      • 115. Fletcher, S.D.A., Norman, P.J., Galloway, S.J., et al: ‘Optimizing the roles of unit and non-unit protection methods within DC microgrids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 20792087.
    116. 116)
      • 116. Saleh, K.A., Hooshyar, A., El-Saadany, E.F.: ‘Hybrid passive-overcurrent relay for detection of faults in low-voltage DC grids’, IEEE Trans. Smart Grid, 2015, 8, (3), pp. 110.
    117. 117)
      • 117. Monadi, M., Koch-ciobotaru, C., Luna, A., et al: ‘A protection strategy for fault detection and location for multi-terminal MVDC distribution systems with renewable energy systems’. International Conference on Renewable Energy Research and Application (ICRERA), Milwaukee, USA, 2014, pp. 496501.
    118. 118)
      • 118. Meghwani, A., Srivastava, S.C., Chakrabarti, S.: ‘A non-unit protection scheme for DC microgrid based on local measurements’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 172181.
    119. 119)
      • 119. Emhemed, A.A.S., Burt, G.M.: ‘An advanced protection scheme for enabling an LVDC last mile distribution network’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 26022609.
    120. 120)
      • 120. Emhemed, A.A.S., Fong, K., Fletcher, S., et al: ‘Validation of fast and selective protection scheme for an LVDC distribution network’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 14321440.
    121. 121)
      • 121. Wang, J., Kadanak, P., Sumner, M., et al: ‘Active fault protection for an AC zonal marine power system architecture’. Conf. Rec. – IAS Annu. Meet. (IEEE Ind. Appl. Soc.), Edmonton, Canada, July 2008, 1, pp. 156166.
    122. 122)
      • 122. Cuzner, R.M., Venkataramanan, G.: ‘The status of DC micro-grid protection’. Industry Applications Society Annual Meeting, Edmonton, Canada, 2008, pp. 18.
    123. 123)
      • 123. Dragičević, T., Lu, X., Vasquez, J.C., et al: ‘DC microgrids – Part II: a review of power architectures, applications, and standardization issues’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 35283549.
    124. 124)
      • 124. IEC 60364-1: ‘Low-voltage electrical installations – part 1: fundamental principles, assessment of general characteristics, definitions’, 2005.
    125. 125)
      • 125. Park, J.D., Candelaria, J.: ‘Fault detection and isolation in low-voltage dc-bus microgrid system’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 779787.
    126. 126)
      • 126. Mohammadi, J., Ajaei, F.B., Stevens, G.: ‘DC microgrid grounding strategies’. IAS 54th Industrial and Commercial Power Systems Technical Conf. (I&CPS), Niagara Falls, Canada, 2018, pp. 16.
    127. 127)
      • 127. Salomonsson, D., Member, S., Söder, L., et al: ‘Protection of low-voltage DC microgrids’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 10451053.
    128. 128)
      • 128. Cuzner, R., Macfarlin, D., Clinger, D., et al: ‘Circuit breaker protection considerations in power converter-Fed DC systems’. Electric Ship Technologies Symp., Baltimore, USA, 2009, pp. 360367.
    129. 129)
      • 129. Palaniappan, K., Veerapeneni, S., Cuzner, R., et al: ‘Assessment of the feasibility of interconnected smart DC homes in a DC microgrid to reduce utility costs of low income households’. IEEE 2nd Int. Conf. Direct Current Microgrids, ICDCM 2017, Nuremberg, Germany, 2017, pp. 467473.
    130. 130)
      • 130. Cuzner, R.M., Palaniappan, K., Sedano, W., et al: ‘Fault characterization and protective system design for a residential DC microgrid’. IEEE 6th Int. Conf. Renewable Energy Research and Applications (ICRERA), San Diego, USA, 2017, pp. 642647.
    131. 131)
      • 131. Hirose, K., Tanaka, T., Babasaki, T., et al: ‘Grounding concept considerations and recommendations for 400VDC distribution system’. INTELEC, Int. Telecommunication Energy Conf., Amsterdam, Netherlands, 2011, pp. 18.
    132. 132)
      • 132. Kumar, D., Zare, F., Ghosh, A.: ‘DC microgrid technology: system architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects’, IEEE Access, 2017, 5, pp. 1223012256.
    133. 133)
      • 133. Paul, D.: ‘DC traction power system grounding’, IEEE Trans. Ind. Appl., 2002, 38, (3), pp. 818824.
    134. 134)
      • 134. Cuzner, R.M., Sielicki, T., Archibald, A.E., et al: ‘Management of ground faults in an ungrounded multi-terminal zonal DC distribution system with auctioneered loads’. IEEE Electric Ship Technologies Symp., Alexandria, USA, 2011, pp. 300305.
    135. 135)
      • 135. Li, C., Rakhra, P., Norman, P., et al: ‘Practical computation of di/dt for high-speed protection of DC microgrids’. 2017 IEEE 2nd Int. Conf. Direct Current Microgrids, ICDCM 2017, Nuremberg, Germany, 2017, pp. 153159.
    136. 136)
      • 136. Christopher, E., Sumner, M., Thomas, D.W.P., et al: ‘Fault location in a zonal DC marine power system using active impedance estimation’, IEEE Trans. Ind. Appl., 2013, 49, (2), pp. 860865.
    137. 137)
      • 137. Jia, K., Bi, T., Liu, B., et al: ‘Marine power distribution system fault location using a portable injection unit’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 818826.
    138. 138)
      • 138. Liu, C.W., Lin, T.C., Yu, C.S., et al: ‘A fault location technique for two-terminal multisection compound transmission lines using synchronized phasor measurements’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 113121.
    139. 139)
      • 139. Fletcher, S.D.A., Norman, P.J., Fong, K., et al: ‘High-speed differential protection for smart DC distribution systems’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 26102617.
    140. 140)
      • 140. Yuan, C., Haj-ahmed, M.A., Illindala, M.: ‘Protection strategies for medium voltage direct current microgrid at a remote area mine site’, IEEE Trans. Ind. Appl., 2015, 9994, (c), pp. 28462853.
    141. 141)
      • 141. Tang, L., Ooi, B.T.: ‘Locating and isolating DC faults in multi-terminal DC systems’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 18771884.
    142. 142)
      • 142. Zhan, H., Wang, C., Wang, Y., et al: ‘Relay Protection Coordination Integrated Optimal Placement and sizing of distributed generation sources in distribution networks’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 5565.
    143. 143)
      • 143. Brozek, J.P.: ‘DC overcurrent protection-where we stand’, IEEE Trans. Ind. Appl., 1993, 29, (5), pp. 10291032.
    144. 144)
      • 144. Tahata, K., Oukaili, S.E., Kamei, K., et al: ‘HVDC circuit breakers for HVDC grid applications’. Proc. AORC-CIGRÉ, Birmingham, UK, 2014, pp. 19.
    145. 145)
      • 145. Dingermann, T., Zündorf, I.: ‘Circuit breaker technologies for advanced ship power systems’. IEEE Electric Ship Technologies Symp., Arlington, USA, 2007, pp. 201208.
    146. 146)
      • 146. Meyer, C., Schröder, S., De Doncker, R.W.: ‘Solid-state circuit breakers and current limiters for medium-voltage systems having distributed power systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 13331340.
    147. 147)
      • 147. Meyer, C., De Doncker, R.W.: ‘Solid-state circuit breaker based on active thyristor topologies’, IEEE Trans. Power Electron., 2006, 21, (2), pp. 450458.
    148. 148)
      • 148. Meyer, C., De Doncker, R.W.: ‘LCC analysis of different resonant circuits and solid-state circuit breakers for medium-voltage grids’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 14141420.
    149. 149)
      • 149. Callanan, R., Das, M.K., Agarwal, A.K., et al: ‘Sic power devices for microgrids’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 28892896.
    150. 150)
      • 150. Millan, J., Godignon, P., Perpina, X., et al: ‘A survey of wide bandgap power semiconductor devices’, IEEE Trans. Power Electron., 2014, 29, (5), pp. 21552163.
    151. 151)
      • 151. Ishida, M., Ueda, T., Tanaka, T., et al: ‘Gan on Si technologies for power switching devices’, IEEE Trans. Electron Devices, 2013, 60, (10), pp. 30533059.
    152. 152)
      • 152. Chow, T.P.: ‘Wide bandgap semiconductor power devices for energy efficient systems’. Proc. IEEE Workshop Wide Bandgap Power Devices Appl. (WiPDA), Blacksburg, USA, November 2015, pp. 402405.
    153. 153)
      • 153. Shen, Z.J., Sabui, G., Miao, Z., et al: ‘Wide-bandgap solid-state circuit breakers for DC power systems: device and circuit considerations’, IEEE Trans. Electron Devices, 2015, 62, (2), pp. 294300.
    154. 154)
      • 154. Miao, Z., Sabui, G., Roshandeh, A.M., et al: ‘Design and analysis of DC solid-state circuit breakers using SiC JFETs’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (3), pp. 863873.
    155. 155)
      • 155. Shukla, A., Demetriades, G.D.: ‘A survey on hybrid circuit-breaker topologies’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 627641.
    156. 156)
      • 156. Peng, C., Huang, A.Q., Song, X.: ‘Current commutation in a medium voltage hybrid DC circuit breaker using 15 kV vacuum switch and SiC devices’. Conf. Proc. – IEEE Applied Power Electronics Conf. and Exposition – APEC, Charlotte, USA, 2015, pp. 22442250.
    157. 157)
      • 157. Holroyd, F.W., Temple, V.A.K.: ‘Power Semiconductor Devices for Hybrid Breakers’, IEEE Trans. Power Eng., 1982, PAS101, (7), pp. 21032108.
    158. 158)
      • 158. Theisen, P.J., Krstic, S., Chen, G.: ‘270-V DC hybrid switch’, IEEE Trans. Comp. Hybrids Manuf. Technol., 1986, 9, (1), pp. 97100.
    159. 159)
      • 159. Tang, Y., Duarte, J.L., Smeets, R.P.P., et al: ‘Multi-stage DC hybrid switch with slow switching’. IECON Proc. (Industrial Electronics Conf.), Melbourne, Australia, 2011, pp. 14621467.
    160. 160)
      • 160. Meyer, J.M., Rufer, A.: ‘A DC hybrid circuit breaker with ultra-fast contact opening and integrated gate-commutated thyristors (IGCTs)’, IEEE Trans. Power Deliv., 2006, 21, (2), pp. 646651.
    161. 161)
      • 161. Takeda, M., Hosokawa, Y., Yamamoto, H., et al: ‘A low loss solid-state transfer switch using hybrid switch devices’. Proc. - IPEMC 2000: 3rd Int. Power Electronics and Motion Control Conf., Beijing, China, 2000, pp. 235240.
    162. 162)
      • 162. Kishida, Y., Koyama, K., Sasao, H., et al: ‘Development of the high speed switch and its application’. Proc. IEEE 33rd Ind. Appl. Conf., St. Louis, USA, 1998, pp. 23212328.
    163. 163)
      • 163. Chen, Z., Yu, Z., Zhang, X., et al: ‘Analysis and experiments for IGBT, IEGT, and IGCT in hybrid DC circuit breaker’, IEEE Trans. Ind. Electron., 2018, 65, (4), pp. 28832892.
    164. 164)
      • 164. Wen, W., Huang, Y., Sun, Y., et al: ‘Research on current commutation measures for hybrid DC circuit breakers’, IEEE Trans. Power Deliv., 2016, 31, (4), pp. 14561463.
    165. 165)
      • 165. ETSI EN 300 132-3-1. 2011. Available at https://www.etsi.org/deliver/etsi_en/300100_300199/3001320301/02.01.01_40/en_3001320301v020101o.pdf.
    166. 166)
      • 166. IEEE Std. 946-2004: ‘IEEE recommended practice for the design of DC auxiliary power systems for generating Stations’, 2004.
    167. 167)
      • 167. IEC: ‘Standardization management board – SG4 LVDC distribution systems up to 1500 V DC’. 2009. Available at https://www.iec.ch/dyn/www/f?p=103:85:0::::FSP_ORG_ID:6019.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5212
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5212
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address