Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Coordinated planning of transmission expansion and coal-fired power plants flexibility retrofits to accommodate the high penetration of wind power

As one of the promising renewable energy technologies, wind power generation has developed rapidly over the last decade. However, the rapid growth of wind power resulted in significant wind curtailment due to transmission congestion and lack of flexible resources. Although energy storage is the most efficient way to increase the flexibility of the power system, large capacities of cost-effective energy storage are not yet available today. Considering that coal-fired power plants are still the dominant suppliers of electricity in many countries, it has a great potential to increase large amounts of flexibility by retrofitting the existing coal-fired power plants. In this study, the coordinated planning model for transmission expansion and coal-fired power plants flexibility retrofits is proposed to accommodate high penetration of wind power. Robust optimisation is employed to handle the uncertainties of peak load demand and wind power capacity, and the robust planning model is solved by nested column-and-constraint generation method. The validity of the proposed planning model is demonstrated using the modified IEEE 24-bus test system and modified IEEE 118-bus test system.

References

    1. 1)
      • 7. Gonzalez-Salazar, M.A., Kirsten, T., Prchlik, L.: ‘Review of the operational flexibility and emissions of gas- and coal-fired power plants in a future with growing renewables’, Renew. Sustain. Energy Rev., 2018, 82, pp. 14971513.
    2. 2)
      • 19. Qiu, T., Xu, B., Wang, Y., et al: ‘Stochastic multistage coplanning of transmission expansion and energy storage’, IEEE Trans. Power Syst., 2016, 32, (1), pp. 643651.
    3. 3)
      • 20. Dehghan, S., Amjady, N.: ‘Robust transmission and energy storage expansion planning in wind farm-integrated power systems considering transmission switching’, IEEE Trans. Sustain. Energy, 2016, 7, (2), pp. 765774.
    4. 4)
      • 26. Cárdenas, A.A.A., Mancilla-David, F., Palma-Behnke, R.E., et al: ‘A polyhedral-based approach applied to quadratic cost curves in the unit commitment problem’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 36743680.
    5. 5)
      • 11. Agora Energiewende: ‘Flexibility in thermal power plants – with a focus on existing coal-fired power plants’. Technical Report, 2017.
    6. 6)
      • 16. Qiu, J., Zhao, J., Dong, Z.Y.: ‘Probabilistic transmission expansion planning for increasing 7 wind power penetration’, IET Renew. Power Gener., 2017, 11, pp. 837845.
    7. 7)
      • 30. Jabr, R.A.: ‘Robust transmission network expansion planning with uncertain renewable generation and loads’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 45584567.
    8. 8)
      • 27. Zhang, X., Conejo, A.J.: ‘Robust transmission expansion planning representing long- and short-term uncertainty’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 13291338.
    9. 9)
      • 18. Moeini-Aghtaie, M., Abbaspour, A., Fotuhi-Firuzabad, M.: ‘Incorporating large-scale distant wind farms in probabilistic transmission expansion planning – part i: theory and algorithm’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 15851593.
    10. 10)
      • 3. Pozo, D., Contreras, J., Sauma, E.E.: ‘Unit commitment with ideal and generic energy storage units’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 29742984.
    11. 11)
      • 12. National Renewable Energy Laboratory (NERL): ‘Cost-benefit analysis of flexibility retrofits for coal and gas-fueled power plants’. Technical Report, 2013.
    12. 12)
      • 17. Orfanos, G.A., Georgilakis, P.S., Hatziargyriou, N.D.: ‘Transmission expansion planning of systems with increasing wind power integration’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 13551362.
    13. 13)
      • 28. Omran, W.A., Kazerani, M., Salama, M.M. A.: ‘A clustering-based method for quantifying the effects of large on-grid PV systems’, IEEE Trans. Power Del., 2010, 25, (4), pp. 26172625.
    14. 14)
      • 29. Papavasiliou, A., Oren, S.S., O'Neill, R.P.: ‘Reserve requirements for wind power integration: a scenario-based stochastic programming framework’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 21972206.
    15. 15)
      • 36. IEEE 118-Bus test system’. Available at http://motor.ece.iit.edu./data/ltscuc, Accessed March 2019.
    16. 16)
      • 4. Cleary, B., Duffy, A., Oconnor, A., et al: ‘Assessing the economic benefits of compressed air energy storage for mitigating wind curtailment’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 10211028.
    17. 17)
      • 8. National Renewable Energy Laboratory (NERL): ‘Flexible coal: evolution from baseload to peaking plant’. Technical Report, 2013.
    18. 18)
      • 35. Wind integration datasets’. Available at http://www.nrel.gov/grid/wind-integrationdata.html/, Accessed December 2016.
    19. 19)
      • 32. Zhao, L., Zeng, B.: ‘An exact algorithm for two-stage robust optimization with mixed integer recourse problems’ (University of South Florida, USA, 2012).
    20. 20)
      • 5. Sun, Y., Zhong, J., Li, Z., et al: ‘Stochastic scheduling of battery-based energy storage transportation system with the penetration of wind power’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 135144.
    21. 21)
      • 31. Zeng, B., Zhao, L.: ‘Solving two-stage robust optimization problems using a column-and-constraint generation method’, Oper. Res. Lett., 2013, 41, (5), pp. 457461.
    22. 22)
      • 6. Jiang, R., Wang, J., Guan, Y.: ‘Robust unit commitment with wind power and pumped storage hydro’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 800810.
    23. 23)
      • 2. Bitaraf, H., Rahman, S.: ‘Reducing curtailed wind energy through energy storage and demand response’, IEEE Trans. Sustain. Energy, 2018, 9, (1), pp. 228236.
    24. 24)
      • 22. Brouwer, A.S., Broek, M.V. D., Seebregts, A., et al: ‘Operational flexibility and economics of power plants in future low-carbon power systems’, Appl. Energy, 2015, 156, pp. 107128.
    25. 25)
      • 23. Michels, A.: ‘Dry lignite increases flexibility’, Energy Res Appl, 2016, 7, pp. 14.
    26. 26)
      • 33. Li, C., Dong, Z., Chen, G., et al: ‘Flexible transmission expansion planning associated with large-scale wind farms integration considering demand response’, IET Gener. Transm. Distrib., 2015, 9, (15), pp. 22762283.
    27. 27)
      • 21. Li, J., Li, Z., Liu, F., et al: ‘Robust coordinated transmission and generation expansion planning considering ramping requirements and construction periods’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 268280.
    28. 28)
      • 15. Gu, Y., Mccalley, J.D., Ni, M.: ‘Coordinating large-scale wind integration and transmission planning’, IEEE Trans. Sustain. Energy, 2013, 3, (4), pp. 652659.
    29. 29)
      • 13. Garðarsdóttir, S.Ó., Göransson, L., Normann, F., et al: ‘Improving the flexibility of coal-fired power generators: impact on the composition of a cost-optimal electricity system’, Appl. Energy, 2018, 209, pp. 277289.
    30. 30)
      • 25. Jeschke, R, Henning, B, Schreier, W.: ‘Flexibility through highly-efficient technology’, VGB Power Tech, 2012, 5, pp. 110.
    31. 31)
      • 34. Subcommittee, P.M.: ‘IEEE reliability test system’, IEEE Trans. Power App. Syst., 1979, 98, (6), pp. 20472054.
    32. 32)
      • 1. Global Wind Report 2016’. Available at http://gwec.net/publications/global-wind-report-2/global-wind-report-2016/, accessed January 2018.
    33. 33)
      • 24. International Energy Agency (IEA) Clean Coal Centre: ‘Increasing the flexibility of coal-fired power plants’. Technical Report, 2014.
    34. 34)
      • 14. Ugranli, F., Karatepe, E.: ‘Transmission expansion planning for wind turbine integrated power systems considering contingency’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 14761485.
    35. 35)
      • 9. Kubik, M.L., Coker, P.J., Barlow, J.F.: ‘Increasing thermal plant flexibility in a high renewables power system’, Appl. Energy, 2015, 154, pp. 102111.
    36. 36)
      • 10. E.ON Energy Research Center: ‘Economic and technical evaluation of enhancing the flexibility of conventional power plants’. Technical Report, 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5182
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5182
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address