access icon free Multi-objective model predictive control of doubly-fed induction generators for wind energy conversion

As large-scale integration of wind systems into the power grid is on the rise, advanced control techniques for wind power generators are highly desired. This paper proposes a simple but effective control technique for doubly fed induction generators (DFIGs) based on the multi-objective model predictive control (MOMPC) scheme. The future behaviors of the DFIGs are predicted by using the system model and the possible converter switching states. The most appropriate vector is then determined by a cost function. By properly modifying the cost function with active and reactive powers as the control objectives, fast grid synchronisation, smooth grid connection, flexible power regulation and maximum power point tracking (MPPT) can be achieved, respectively. In order to reduce the switching frequency for switching loss reduction, a nonlinear constraint is integrated into the cost function. The controller is simple without using any Proportion Integration (PI) regulators, current loops, and switching tables. A numerical simulation of a 2MW system based on MATLAB/Simulink is built to verify the effectiveness of the proposed method. The results show that the proposed method can achieve quicker transient response, better steady-state performance, and lower switching frequency compared to the conventional switching table based direct power control (DPC).

Inspec keywords: wind turbines; synchronisation; reactive power control; maximum power point trackers; predictive control; power grids; numerical analysis; machine control; discrete time systems; wind power plants; switching convertors; asynchronous generators

Other keywords: MATLAB; maximum power point tracking; wind power generators; doubly-fed induction generators; fast grid synchronisation; wind turbine systems; active power; cost function; control objectives; system discrete-time model; advanced control techniques; power grid; reactive power; smooth grid connection; nonlinear constraint; DFIG-based wind power system; switching frequency reduction; multiobjective model predictive control scheme; flexible power regulation; voltage vector; Simulink; switching loss reduction; MOMPC; numerical simulation; power converter switching states; wind energy conversion

Subjects: Other numerical methods; Optimal control; Power and energy control; DC-DC power convertors; Discrete control systems; Power system control; Other numerical methods; Control of electric power systems; Wind power plants; Asynchronous machines

References

    1. 1)
      • 24. Errouissi, R., Al-Durra, A., Muyeen, S.M., et al: ‘Offset-free direct power control of DFIG under continuous-time model predictive control’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 22652277.
    2. 2)
      • 22. Zhang, S., Xiong, R., Zun, F.: ‘Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system’, Appl. Energy, 2017, 185, pp. 16541662.
    3. 3)
      • 29. Saglam, U.: ‘Assessment of the productive efficiency of large wind farms in the United States: an application of two-stage data envelopment analysis’, Energy Convers. Manage., 2017, 153, pp. 188214.
    4. 4)
      • 6. Wu, Z., Li, F., Zhang, W., et al: ‘Research on robust adaptive cooperative stabilisation control for doubly-fed induction generator unit’, IET Gener. Transm. Distrib., 2017, 12, (4), pp. 9971003.
    5. 5)
      • 30. Wandhare, R.G., Agarwal, V.: ‘Novel integration of a pv-wind energy system with enhanced efficiency’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 36383649.
    6. 6)
      • 25. Liu, Q., Hameyer, K.: ‘Torque ripple minimization for direct torque control of PMSM with modified FCSMPC’, IEEE Trans. Ind. Appl., 2016, 52, (6), pp. 48554864.
    7. 7)
      • 14. Manel, J.-B.G., Arbi, J., Ilhem, S.-B.: ‘A novel approach of direct active and reactive power control allowing the connection of the DFIG to the grid’. Proc. IEEE Power Electronics and Applications Conf., 2009, pp. 110.
    8. 8)
      • 8. Ademi, S., Jovanovic, M.: ‘A novel sensorless speed controller design for doubly-fed reluctance wind turbine generators’, Energy Convers. Manage., 2016, 120, pp. 229237.
    9. 9)
      • 9. De Doncker, R.W., Muller, S., Deicke, M.: ‘Doubly fed induction generator systems for wind turbines’, IEEE Mag. Ind. Appl., 2002, 8, (3), pp. 2633.
    10. 10)
      • 3. Biswas, P.P., Suganthan, P.N., Amaratunga, G.A.J.: ‘Optimal power flow solutions incorporating stochastic wind and solar power’, Energy Convers. Manage., 2017, 148, pp. 11941207.
    11. 11)
      • 4. Jafarian, M., Ranjbar, A.M.: ‘Interaction of the dynamics of doubly fed wind generators with power system electromechanical oscillations’, IET Renew. Power Gener., 2013, 7, (2), pp. 8997.
    12. 12)
      • 23. Filho, A.J.S., Filho, E.R.: ‘Model-based predictive control applied to the doubly-fed induction generator direct power control’, IEEE Trans. Sustain. Energy, 2012, 3, (3), pp. 398406.
    13. 13)
      • 1. Global Wind Energy Council: ‘Global wind energy outlook 2016’, November 2016.
    14. 14)
      • 17. Hu, J., Zhu, J., Zhang, Y., et al: ‘Predictive direct virtual torque and power control of doubly fed induction generators for fast and smooth grid synchronization and flexible power regulation’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 31823194.
    15. 15)
      • 10. Aydin, E., Polat, A., Ergene, L.T.: ‘Vector control of DFG in wind power applications and analysis for voltage drop condition’. Proc. of National Conf. on Electrical, Electronics and Biomedical Engineering (ELECO), 2016, pp. 8185.
    16. 16)
      • 31. Fathabadi, H.: ‘Novel photovoltaic based battery charger including novel high efficiency step-up dc/dc converter and novel high accurate fast maximum power point tracking controller’, Energy Convers. Manage., 2016, 110, pp. 200211.
    17. 17)
      • 20. Zarei, M.E., Nicolas, C.V., Arribas, J.R.: ‘Improved predictive direct power control of doubly fed induction generator during unbalanced grid voltage based on four vectors’, IEEE J. Emerging Sel. Top. Power Electron., 2017, 5, (2), pp. 695707.
    18. 18)
      • 15. Datta, R., Ranganathan, V.: ‘Direct power control of grid-connected wound rotor induction macine without rotor position sensors’, IEEE Trans. Power Electron., 2001, 16, (3), pp. 390399.
    19. 19)
      • 19. Abad, G., Rodriguez, M.A., Poza, J.: ‘Two-level VSC-based predictive direct power control of the doubly fed induction machine with reduced power ripple at low constant switching frequency’, IEEE Trans. Energy Convers., 2008, 23, (2), pp. 570580.
    20. 20)
      • 27. Ostolaza, J.X., Etxeberria, A., Zubia, I.: ‘Wind farm node connected DFIG/back-to-back converter coupling transient model for grid integration studies’, Energy Convers. Manage.., 2015, 106, pp. 428439.
    21. 21)
      • 13. Pimple, B.B., Vekhande, V.Y., Fernandes, B.G.: ‘A new direct torque control of doubly fed induction generator for wind power generation’. Proc. India Int. Conf. on Power Electronics, 2011, pp. 15.
    22. 22)
      • 28. Muttaqi, K.M., Hagh, M.T.: ‘A synchronization control technique for soft connection of doubly-fed induction generator based wind turbines to the power grid’. IEEE Ind. Appl. Society Annual Meeting, 2017, pp. 17.
    23. 23)
      • 2. Song, Z., Xia, C., Shi, T.: ‘Assessing transient response of DFIG based wind turbines during voltage dips regarding main flux saturation and rotor deep-bar effect’, Appl. Energy, 2010, 87, (10), pp. 32833293.
    24. 24)
      • 18. Tremblay, E., Atayde, S., Chandra, A.: ‘Comparative study of control strategies for the doubly fed induction generator in wind energy conversion systems: a DSP-based implementation approach’, IEEE Trans. Sustain. Energy, 2011, 2, (3), pp. 288299.
    25. 25)
      • 21. Kujundzic, G., Iles, S., Matusko, J., et al: ‘Optimal charging of valve-regulated lead-acid batteries based on model predictive control’, Appl. Energy, 2017, 187, pp. 189202.
    26. 26)
      • 12. Boulouiha, H.M., Allalia, A., Laouer, M., et al: ‘Direct torque control of multilevel SVPWM inverter in variable speed SCIG-based wind energy conversion system’, Renew. Energy, 2015, 80, pp. 140152.
    27. 27)
      • 5. Edrah, M., Lo, K.L., Anaya-Lara, O.: ‘Reactive power control of DFIG wind turbines for power oscillation damping under a wide range of operating conditions’, IET. Gener. Transm. Distrib., 2016, 10, (15), pp. 37773785.
    28. 28)
      • 11. Abad, G., Rodriguez, M.A., Poza, J.: ‘Two-level VSC based predictive direct torque control of the doubly fed induction machine with reduced torque and flux ripples at low constant switching frequency’, IEEE Trans. Power. Electron., 2008, 23, (3), pp. 10501061.
    29. 29)
      • 16. Singh, B., Naidu, N.K.S.: ‘Direct power control of single VSC-based DFIG without rotor position sensor’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 41524163.
    30. 30)
      • 7. Chen, Z., Guerrero, J., Blaabjerg, F.: ‘A review of the state of the art of power electronics for wind turbines’, IEEE Trans. Power Electron., 2009, 24, (8), pp. 18591875.
    31. 31)
      • 26. Sayari, N.A., Chilipi, R., Barara, M.: ‘An adaptive control algorithm for grid-interfacing inverters in renewable energy based distributed generation systems’, Energy Convers. Manage.., 2016, 111, pp. 443452.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5172
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5172
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading