http://iet.metastore.ingenta.com
1887

Fault location in microgrids: a communication-based high-frequency impedance approach

Fault location in microgrids: a communication-based high-frequency impedance approach

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper proposes a novel method to locate faults in an AC-meshed microgrid. To this end, a set of features is first extracted and selected from the measured signals and fed to a Support Vector Machine (SVM) to detect the occurrence of fault. Then, the Distributed Generator (DG) with the lowest amount of fundamental voltage, which is the closest one to the fault, injects an appropriate voltage/current harmonic. As the faulted section has the lowest impedance value from the Point of Common Coupling of the DG, the harmonic current of the corresponding line has the highest value. Based on this fact, the first candidate DG sends a notification signal to the second candidate DG, in which the fault occurs between them. Finally, the impedances in the injected frequency are measured from these two DGs and fed into a multi-class SVM to locate the faulted line. The proposed method has the ability to locate faults for islanded and grid-connected microgrids with variable configurations. Real-time simulation results are taken by OPAL-RT to show the effectiveness of the proposed method in the meshed microgrid.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5166
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5166
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address