Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Fault location in microgrids: a communication-based high-frequency impedance approach

Fault location in microgrids: a communication-based high-frequency impedance approach

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper proposes a novel method to locate faults in an AC-meshed microgrid. To this end, a set of features is first extracted and selected from the measured signals and fed to a Support Vector Machine (SVM) to detect the occurrence of fault. Then, the Distributed Generator (DG) with the lowest amount of fundamental voltage, which is the closest one to the fault, injects an appropriate voltage/current harmonic. As the faulted section has the lowest impedance value from the Point of Common Coupling of the DG, the harmonic current of the corresponding line has the highest value. Based on this fact, the first candidate DG sends a notification signal to the second candidate DG, in which the fault occurs between them. Finally, the impedances in the injected frequency are measured from these two DGs and fed into a multi-class SVM to locate the faulted line. The proposed method has the ability to locate faults for islanded and grid-connected microgrids with variable configurations. Real-time simulation results are taken by OPAL-RT to show the effectiveness of the proposed method in the meshed microgrid.

References

    1. 1)
      • 19. Sortomme, E., Venkata, S.S., Mitra, J.: ‘Microgrid protection using communication-assisted digital relays’, IEEE Trans. Power Del., 2010, 25, (4), pp. 27892796.
    2. 2)
      • 16. Mahat, P., Chen, Z., Bak-Jensen, B., et al: ‘A simple adaptive overcurrent protection of distribution systems with distributed generation’, IEEE trans. Smart Grid, 2011, 2, (3), pp. 428437.
    3. 3)
      • 15. Brahma, S.M., Girgis, A.A.: ‘Development of adaptive protection scheme for distribution systems with high penetration of distributed generation’, IEEE Trans. Power Deliv., 2004, 19, (1), pp. 5663.
    4. 4)
      • 2. Guerrero, J.M., Chandorkar, M., Lee, T., et al: ‘Advanced control architectures for intelligent microgrids – part I: decentralized and hierarchical control’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12541262.
    5. 5)
      • 28. Beheshtaein, S., Savaghebi, M., Guerrero, J.M.: ‘A fuzzy-based hybrid PLL scheme for abnormal grid conditions’. Proc. Ind. Electron. Soc. Conf., Yokohama, Japan, November 2015, pp. 50955100.
    6. 6)
      • 29. Reigosa, D.D., Briz, F., Member, S., et al: ‘Active islanding detection using high-frequency signal injection’, IEEE Trans. Ind. Appl., 2012, 48, (5), pp. 15881597.
    7. 7)
      • 4. Tan, S., Xu, J.X., Panda, S.K.: ‘Optimization of distribution network incorporating distributed generators: An integrated approach’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 24212432.
    8. 8)
      • 30. Rodríguez, P., Member, S., Luna, A., et al: ‘Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 127138.
    9. 9)
      • 24. Meng, L., Luna, A., Díaz, E.R., et al: ‘Flexible system integration and advanced hierarchical control architectures in the microgrid research laboratory of Aalborg University’, IEEE Trans. Ind. Appl., 2016, 52, (2), pp. 17361749.
    10. 10)
      • 31. Verdelho, P., Marques, G.D.: ‘Four-wire current-regulated PWM voltage converter’, IEEE Trans. Ind. Electron., 1998, 45, (5), pp. 761770.
    11. 11)
      • 11. Monadi, M., Zamani, M.A., Ignacio, J., et al: ‘Protection of AC and DC distribution systems’, Embedding Distrib. Energy Resour.: A Comp. Rev. Anal., 2015, 51, pp. 15781593.
    12. 12)
      • 12. Zeineldin, H.H., El-Saadany, E.F., Salama, M.M., et al: ‘Optimal sizing of thyristor-controlled impedance for smart grids with multiple configurations’, IEEE Trans. Smart Grid, 2011, 2, (3), pp. 528537.
    13. 13)
      • 5. Che, L., Khodayar, M.E., Shahidehpour, M.: ‘Adaptive protection system for microgrids: protection practices of a functional microgrid system’, IEEE electrif. Mag., 2014, 2, (1), pp. 6680.
    14. 14)
      • 13. Jayawarna, N., Jones, C., Jenkins, N., et al: ‘Operating microgrid energy storage control during network faults’. IEEE International Conference on System of Systems Engineering, San Antonio, TX, USA, April 2007, pp. 17.
    15. 15)
      • 22. Microgrids, S.: ‘A novel method of fault location for single-phase microgrids’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 915925.
    16. 16)
      • 32. Savaghebi, M., Member, S., Jalilian, A., et al: ‘Secondary control for voltage quality enhancement in microgrids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 18931902.
    17. 17)
      • 10. Chen, M., Shi, D., Duan, X.: ‘Minimum break relay dependency set approach for coordination of directional relays in multi-loop networks'IET gener. Transm. Distrib. Res., 2017, 11, (5), pp. 12791285.
    18. 18)
      • 25. Beheshtaein, S.: ‘Application of wavelet-base method and DT in detection of ferroresonance from other transient phenomena’. Int. Symp. INovations in Intelligent Systems and Applications (INISTA), Trabzon, Turkey, July 2012, pp. 17.
    19. 19)
      • 33. Yue, Q., Lu, F., Yu, W., et al: ‘A novel algorithm to determine minimum break point set for optimum cooperation of directional protection relays in multiloop networks’, IEEE Trans. Power Del., 2006, 21, (3), pp. 11141119.
    20. 20)
      • 26. Livani, H., Member, S., Evrenosoglu, C.Y., et al: ‘A machine learning and wavelet-based fault location method for hybrid transmission lines’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 5159.
    21. 21)
      • 8. Beheshtaein, S., Savaghebi, M., Vasquez, J.C., et al: ‘Protection of AC and DC microgrids: challenges, solutions and future trends’. Proc. 41th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Yokohama, Japan, November 2015, pp. 52535260.
    22. 22)
      • 9. Brearley, B.J., Prabu, R.R.: ‘A review on issues and approaches for microgrid protection’, Renew. Sustain. Energy Rev., 2017, 67, pp. 988997.
    23. 23)
      • 23. IEEE guide for determining fault location on AC transmission and distribution lines, IEEE standard C37.114’. 2014.
    24. 24)
      • 21. Oureilidis, K.O., Demoulias, C.S., Member, S.: ‘A fault clearing method in converter-dominated microgrids with conventional protection means’, IEEE trans. Power Elecron., 2016, 31, (6), pp. 46284640.
    25. 25)
      • 7. Yazdanpanahi, H., Li, Y.W., Xu, W.: ‘A new control strategy to mitigate the impact of inverter-based DGs on protection system’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 14271436.
    26. 26)
      • 1. Zadsar, M., Haghifam, M.R., Miri Larimi, S.M.: ‘Approach for self-healing resilient operation of active distribution network with microgrid’, IET Gener. Transm. Distrib., 2017, 11, (18), pp. 46334643.
    27. 27)
      • 20. Rocabert, J., Luna, A., Blaabjerg, F., et al: ‘Control of power converters in AC microgrids’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 47344749.
    28. 28)
      • 14. El-Khattam, W., Sidhu, T.S.: ‘Restoration of directional overcurrent relay coordination in distributed generation systems utilizing fault current limiter’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 576585.
    29. 29)
      • 18. Prasai, A., Du, Y., Paquette, A., et al: ‘Protection of meshed microgrids with communication overlay’. IEEE Energy Convers. Congr. Exposition, Atlanta, GA, USA, September 2010, pp. 17, pp. 6471.
    30. 30)
      • 3. Manaffam, S., Talebi, M., Jain, A.K., et al: ‘Intelligent pinning based cooperative secondary control of distributed generators for microgrid in islanding operation mode’, IEEE Trans. Power Syst., 2017, 33, (2), pp. 13641373.
    31. 31)
      • 6. Piesciorovsky, E.C., Schulz, N.N.: ‘Fuse relay adaptive overcurrent protection scheme for microgrid with distributed generators’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 540549.
    32. 32)
      • 17. Che, L., Zhang, X., Shahidehpour, M., et al: ‘Optimal planning of loop-based microgrid topology’, IEEE Trans. Smart Grid, 2016, 8, (4), pp. 17711781.
    33. 33)
      • 27. Hsu, C., Lin, C.: ‘A comparison of methods for multiclass support vector machines’, IEEE Trans. Neural Netw., 2002, 13, (2), pp. 415425.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5166
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5166
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address