access icon free Parallel solution of transient stability constrained optimal power flow by exact optimality condition decomposition

Power systems are required to achieve an optimally economic operating point while maintaining security and stability in the presence of credible contingencies. Transient stability constrained optimal power flow (TSCOPF) is a tool to bridge steady-state optimal power flow (OPF) with transient processes under a predefined set of simulated contingencies to guarantee post-fault rotor angle stability in a simulation time window. A parallel solution of TSCOPF using exact optimality condition (OC) decomposition is proposed, where generator swing equations are utilised recursively by exploring the structure of OCs of TSCOPF from the end of simulation time window to its beginning to derive an exact explicit expression consisting of generator-dynamics-related variables in terms of the steady-state variables. The OCs of the TSCOPF model are then decomposed into the OC of OPF, along with a parallel evaluation of this expression for each contingency. Multi-core processing units are applied to accelerate the evaluation process. Case studies with up to 1047 buses over 16 contingences demonstrate an 8× improvement in the computation for realistically sized power systems using the proposed decomposition strategy.

Inspec keywords: power system control; power system stability; rotors; optimisation; power system transient stability; power system security; load flow

Other keywords: generator-dynamics-related variables; steady-state variables; simulated contingencies; exact explicit expression; optimally economic operating point; exact optimality condition decomposition; realistically sized power systems; transient stability; parallel solution; TSCOPF model; parallel evaluation; transient processes; post-fault rotor angle stability; simulation time window; OC; credible contingencies; steady-state optimal power flow

Subjects: Optimisation techniques; Control of electric power systems; Power system control; Optimisation techniques

References

    1. 1)
      • 6. Calle, I.A., Ledesma, P., Castronuovo, E.D.: ‘Advanced application of transient stability constrained-optimal power flow to a transmission system including an HVDC-LCC link’, IET Gener. Transm. Distrib., 2015, 9, (13), pp. 17651772.
    2. 2)
      • 26. Jiang, Q., Huang, Z.: ‘An enhanced numerical discretization method for transient stability constrained optimal power flow’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 17901797.
    3. 3)
      • 29. Jiang, Q., Geng, G.: ‘A reduced-space interior point method for transient stability constrained optimal power flow’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 12321240.
    4. 4)
      • 25. Xia, Y., Chan, K.W., Liu, M.: ‘Direct nonlinear primal-dual interior-point method for transient stability constrained optimal power flow’, IEE Proc. Gener. Transm. Distrib., 2005, 152, (1), pp. 11116.
    5. 5)
      • 7. Ledesma, P., Calle, I.A., Castronuovo, E.D., et al: ‘Multi-contingency TSCOPF based on full-system simulation’, IET Gener. Transm. Distrib., 2017, 11, (1), pp. 6472.
    6. 6)
      • 19. Tu, X., Dessaint, L.A., Nguyen-Duc, H.: ‘Transient stability constrained optimal power flow using independent dynamic simulation’, IET Gener. Transm. Distrib., 2013, 7, (3), pp. 244253.
    7. 7)
      • 15. Ye, C.J., Huang, M.X.: ‘Multi-objective optimal power flow considering transient stability based on parallel NSGA-II’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 857866.
    8. 8)
      • 34. Wei, H., Sasaki, H., Kubokawa, J., et al: ‘An interior point nonlinear programming for optimal power flow problems with a novel data structure’, IEEE Trans. Power Syst., 1998, 13, (3), pp. 870877.
    9. 9)
      • 21. Pizano-Martinez, A., Fuerte-Esquivel, C.R., Ruiz-Vega, D.: ‘A new practical approach to transient stability-constrained optimal power flow’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 16861696.
    10. 10)
      • 4. Nguyen, T.T., Nguyen, V.L., Karimishad, A.: ‘Transient stability-constrained optimal power flow for online dispatch and nodal price evaluation in power systems with flexible AC transmission system devices’, IET Gener. Transm. Distrib., 2011, 5, (3), pp. 332346.
    11. 11)
      • 28. Geng, G., Ajjarapu, V., Jiang, Q.: ‘A hybrid dynamic optimization approach for stability constrained optimal power flow’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 21382149.
    12. 12)
      • 33. Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J.: ‘Matpower's extensible optimal power flow architecture’. 2009 IEEE Power Energy Society General Meeting, Calgary, AB, Canada, July 2009, pp. 17.
    13. 13)
      • 10. Han, T., Chen, Y., Ma, J.: ‘Multi-objective robust dynamic VAR planning in power transmission girds for improving short-term voltage stability under uncertainties’, IET Gener. Transm. Distrib., 2018, 12, (8), pp. 19291940.
    14. 14)
      • 18. Xu, Y., Dong, Z.Y., Meng, K., et al: ‘A hybrid method for transient stability-constrained optimal power flow computation’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 17691777.
    15. 15)
      • 2. Gan, D., Thomas, R.J., Zimmerman, R.D.: ‘Stability-constrained optimal power flow’, IEEE Trans. Power Syst., 2000, 15, (2), pp. 535540.
    16. 16)
      • 16. Yue, Y., Kubokawa, J., Sasaki, H.: ‘A solution of optimal power flow with multicontingency transient stability constraints’, IEEE Trans. Power Syst., 2003, 18, (3), pp. 10941102.
    17. 17)
      • 11. Cai, H.R., Chung, C.Y., Wong, K.P.: ‘Application of differential evolution algorithm for transient stability constrained optimal power flow’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 719728.
    18. 18)
      • 5. Hakim, L., Kubokawa, J., Yuan, Y., et al: ‘A study on the effect of generation shedding to total transfer capability by means of transient stability constrained optimal power flow’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 347355.
    19. 19)
      • 32. Kundur, P., Balu, N.J., Lauby, M.G.: ‘Power system stability and control’ (McGraw-Hill Press, New York, NY, USA, 1994).
    20. 20)
      • 17. Tang, L., Sun, W.: ‘An automated transient stability constrained optimal power flow based on trajectory sensitivity analysis’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 590599.
    21. 21)
      • 31. Geng, G., Jiang, Q., Sun, Y.: ‘Parallel transient stability-constrained optimal power flow using GPU as coprocessor’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 14361445.
    22. 22)
      • 1. Fouad, A.A., Tong, J.: ‘Stability constrained optimal rescheduling of generation’, IEEE Trans. Power Syst., 1993, 8, (1), pp. 105112.
    23. 23)
      • 23. Tu, X., Dessaint, L.A., Kamwa, I.: ‘Fast approach for transient stability constrained optimal power flow based on dynamic reduction method’, IET Gener. Transm. Distrib., 2014, 8, (7), pp. 12931305.
    24. 24)
      • 8. Xia, S., Luo, X., Chan, K.W., et al: ‘Probabilistic transient stability constrained optimal power flow for power systems with multiple correlated uncertain wind generations’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 11331144.
    25. 25)
      • 35. Sharma, G., Martin, J.: ‘Matlab: a language for parallel computing’, Int. J. Parallel Program., 2009, 37, (1), pp. 336.
    26. 26)
      • 30. Geng, G., Jiang, Q.: ‘A two-level parallel decomposition approach for transient stability constrained optimal power flow’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 20632073.
    27. 27)
      • 24. Han, T., Chen, Y., Ma, J., et al: ‘Surrogate modeling-based multi-objective dynamic VAR planning considering short-term voltage stability and transient stability’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 622633.
    28. 28)
      • 12. Chen, Y., Luo, F., Xu, Y., et al: ‘Self-adaptive differential approach for transient stability constrained optimal power flow’, IET Gener. Transm. Distrib., 2016, 10, (15), pp. 37173726.
    29. 29)
      • 22. Pizano-Martianez, A., Fuerte-Esquivel, C.R., Ruiz-Vega, D.: ‘Global transient stability-constrained optimal power flow using an OMIB reference trajectory’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 392403.
    30. 30)
      • 9. Xu, Y., Ma, J., Dong, Z.Y., et al: ‘Robust transient stability-constrained optimal power flow with uncertain dynamic loads’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 19111921.
    31. 31)
      • 3. Xin, H., Gan, D., Huang, Z., et al: ‘Applications of stability-constrained optimal power flow in the east China system’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 14231433.
    32. 32)
      • 27. Jiang, Q., Huang, Z., Xu, K.: ‘Contingency filtering technique for transient stability constrained optimal power flow’, IET Gener. Transm. Distrib., 2013, 7, (12), pp. 15361546.
    33. 33)
      • 14. Xia, S., Chan, K.W., Bai, X., et al: ‘Enhanced particle swarm optimisation applied for transient angle and voltage constrained discrete optimal power flow with flexible AC transmission system’, IET Gener. Transm. Distrib., 2015, 9, (1), pp. 6174.
    34. 34)
      • 13. Mo, N., Zou, Z.Y., Chan, K.W., et al: ‘Transient stability constrained optimal power flow using particle swarm optimisation’, IET Gener. Transm. Distrib., 2007, 1, (3), pp. 476483.
    35. 35)
      • 20. Zerigui, A., Dessaint, L.A., Hannat, R., et al: ‘Statistical approach for transient stability constrained optimal power flow’, IET Gener. Transm. Distrib., 2015, 9, (14), pp. 18561864.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5151
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5151
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading