http://iet.metastore.ingenta.com
1887

Parallel solution of transient stability constrained optimal power flow by exact optimality condition decomposition

Parallel solution of transient stability constrained optimal power flow by exact optimality condition decomposition

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Power systems are required to achieve an optimally economic operating point while maintaining security and stability in the presence of credible contingencies. Transient stability constrained optimal power flow (TSCOPF) is a tool to bridge steady-state optimal power flow (OPF) with transient processes under a predefined set of simulated contingencies to guarantee post-fault rotor angle stability in a simulation time window. A parallel solution of TSCOPF using exact optimality condition (OC) decomposition is proposed, where generator swing equations are utilised recursively by exploring the structure of OCs of TSCOPF from the end of simulation time window to its beginning to derive an exact explicit expression consisting of generator-dynamics-related variables in terms of the steady-state variables. The OCs of the TSCOPF model are then decomposed into the OC of OPF, along with a parallel evaluation of this expression for each contingency. Multi-core processing units are applied to accelerate the evaluation process. Case studies with up to 1047 buses over 16 contingences demonstrate an 8× improvement in the computation for realistically sized power systems using the proposed decomposition strategy.

References

    1. 1)
      • 1. Fouad, A.A., Tong, J.: ‘Stability constrained optimal rescheduling of generation’, IEEE Trans. Power Syst., 1993, 8, (1), pp. 105112.
    2. 2)
      • 2. Gan, D., Thomas, R.J., Zimmerman, R.D.: ‘Stability-constrained optimal power flow’, IEEE Trans. Power Syst., 2000, 15, (2), pp. 535540.
    3. 3)
      • 3. Xin, H., Gan, D., Huang, Z., et al: ‘Applications of stability-constrained optimal power flow in the east China system’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 14231433.
    4. 4)
      • 4. Nguyen, T.T., Nguyen, V.L., Karimishad, A.: ‘Transient stability-constrained optimal power flow for online dispatch and nodal price evaluation in power systems with flexible AC transmission system devices’, IET Gener. Transm. Distrib., 2011, 5, (3), pp. 332346.
    5. 5)
      • 5. Hakim, L., Kubokawa, J., Yuan, Y., et al: ‘A study on the effect of generation shedding to total transfer capability by means of transient stability constrained optimal power flow’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 347355.
    6. 6)
      • 6. Calle, I.A., Ledesma, P., Castronuovo, E.D.: ‘Advanced application of transient stability constrained-optimal power flow to a transmission system including an HVDC-LCC link’, IET Gener. Transm. Distrib., 2015, 9, (13), pp. 17651772.
    7. 7)
      • 7. Ledesma, P., Calle, I.A., Castronuovo, E.D., et al: ‘Multi-contingency TSCOPF based on full-system simulation’, IET Gener. Transm. Distrib., 2017, 11, (1), pp. 6472.
    8. 8)
      • 8. Xia, S., Luo, X., Chan, K.W., et al: ‘Probabilistic transient stability constrained optimal power flow for power systems with multiple correlated uncertain wind generations’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 11331144.
    9. 9)
      • 9. Xu, Y., Ma, J., Dong, Z.Y., et al: ‘Robust transient stability-constrained optimal power flow with uncertain dynamic loads’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 19111921.
    10. 10)
      • 10. Han, T., Chen, Y., Ma, J.: ‘Multi-objective robust dynamic VAR planning in power transmission girds for improving short-term voltage stability under uncertainties’, IET Gener. Transm. Distrib., 2018, 12, (8), pp. 19291940.
    11. 11)
      • 11. Cai, H.R., Chung, C.Y., Wong, K.P.: ‘Application of differential evolution algorithm for transient stability constrained optimal power flow’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 719728.
    12. 12)
      • 12. Chen, Y., Luo, F., Xu, Y., et al: ‘Self-adaptive differential approach for transient stability constrained optimal power flow’, IET Gener. Transm. Distrib., 2016, 10, (15), pp. 37173726.
    13. 13)
      • 13. Mo, N., Zou, Z.Y., Chan, K.W., et al: ‘Transient stability constrained optimal power flow using particle swarm optimisation’, IET Gener. Transm. Distrib., 2007, 1, (3), pp. 476483.
    14. 14)
      • 14. Xia, S., Chan, K.W., Bai, X., et al: ‘Enhanced particle swarm optimisation applied for transient angle and voltage constrained discrete optimal power flow with flexible AC transmission system’, IET Gener. Transm. Distrib., 2015, 9, (1), pp. 6174.
    15. 15)
      • 15. Ye, C.J., Huang, M.X.: ‘Multi-objective optimal power flow considering transient stability based on parallel NSGA-II’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 857866.
    16. 16)
      • 16. Yue, Y., Kubokawa, J., Sasaki, H.: ‘A solution of optimal power flow with multicontingency transient stability constraints’, IEEE Trans. Power Syst., 2003, 18, (3), pp. 10941102.
    17. 17)
      • 17. Tang, L., Sun, W.: ‘An automated transient stability constrained optimal power flow based on trajectory sensitivity analysis’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 590599.
    18. 18)
      • 18. Xu, Y., Dong, Z.Y., Meng, K., et al: ‘A hybrid method for transient stability-constrained optimal power flow computation’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 17691777.
    19. 19)
      • 19. Tu, X., Dessaint, L.A., Nguyen-Duc, H.: ‘Transient stability constrained optimal power flow using independent dynamic simulation’, IET Gener. Transm. Distrib., 2013, 7, (3), pp. 244253.
    20. 20)
      • 20. Zerigui, A., Dessaint, L.A., Hannat, R., et al: ‘Statistical approach for transient stability constrained optimal power flow’, IET Gener. Transm. Distrib., 2015, 9, (14), pp. 18561864.
    21. 21)
      • 21. Pizano-Martinez, A., Fuerte-Esquivel, C.R., Ruiz-Vega, D.: ‘A new practical approach to transient stability-constrained optimal power flow’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 16861696.
    22. 22)
      • 22. Pizano-Martianez, A., Fuerte-Esquivel, C.R., Ruiz-Vega, D.: ‘Global transient stability-constrained optimal power flow using an OMIB reference trajectory’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 392403.
    23. 23)
      • 23. Tu, X., Dessaint, L.A., Kamwa, I.: ‘Fast approach for transient stability constrained optimal power flow based on dynamic reduction method’, IET Gener. Transm. Distrib., 2014, 8, (7), pp. 12931305.
    24. 24)
      • 24. Han, T., Chen, Y., Ma, J., et al: ‘Surrogate modeling-based multi-objective dynamic VAR planning considering short-term voltage stability and transient stability’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 622633.
    25. 25)
      • 25. Xia, Y., Chan, K.W., Liu, M.: ‘Direct nonlinear primal-dual interior-point method for transient stability constrained optimal power flow’, IEE Proc. Gener. Transm. Distrib., 2005, 152, (1), pp. 11116.
    26. 26)
      • 26. Jiang, Q., Huang, Z.: ‘An enhanced numerical discretization method for transient stability constrained optimal power flow’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 17901797.
    27. 27)
      • 27. Jiang, Q., Huang, Z., Xu, K.: ‘Contingency filtering technique for transient stability constrained optimal power flow’, IET Gener. Transm. Distrib., 2013, 7, (12), pp. 15361546.
    28. 28)
      • 28. Geng, G., Ajjarapu, V., Jiang, Q.: ‘A hybrid dynamic optimization approach for stability constrained optimal power flow’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 21382149.
    29. 29)
      • 29. Jiang, Q., Geng, G.: ‘A reduced-space interior point method for transient stability constrained optimal power flow’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 12321240.
    30. 30)
      • 30. Geng, G., Jiang, Q.: ‘A two-level parallel decomposition approach for transient stability constrained optimal power flow’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 20632073.
    31. 31)
      • 31. Geng, G., Jiang, Q., Sun, Y.: ‘Parallel transient stability-constrained optimal power flow using GPU as coprocessor’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 14361445.
    32. 32)
      • 32. Kundur, P., Balu, N.J., Lauby, M.G.: ‘Power system stability and control’ (McGraw-Hill Press, New York, NY, USA, 1994).
    33. 33)
      • 33. Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J.: ‘Matpower's extensible optimal power flow architecture’. 2009 IEEE Power Energy Society General Meeting, Calgary, AB, Canada, July 2009, pp. 17.
    34. 34)
      • 34. Wei, H., Sasaki, H., Kubokawa, J., et al: ‘An interior point nonlinear programming for optimal power flow problems with a novel data structure’, IEEE Trans. Power Syst., 1998, 13, (3), pp. 870877.
    35. 35)
      • 35. Sharma, G., Martin, J.: ‘Matlab: a language for parallel computing’, Int. J. Parallel Program., 2009, 37, (1), pp. 336.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5151
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5151
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address