Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Linear daily UC model to improve the transient stability of power system

As coherency of generators decreases, the risk of rotor angle instability increases, especially under severe contingencies. The slow coherency as a network characteristic may be controlled by the locations of committed generators. Unit commitment (UC) problem is conventionally carried out regarding operational and network constraints. In this study, a two-step strategy is developed to promote the slow coherency via the network constrained UC (NCUC) model on a daily horizon. First, conventional NCUC is executed. The most important generators with both economic and coherency merits are then determined as representative generators. In the second step, the Slow Coherency Based Unit Commitment (SCBUC) is re-optimisedaccording to the results obtained from the first step, using a multi-objective function. The first part of the multi-objective function is devoted to the cost of generation, start-up, and shutdown of generators. The goal of the second part of the multi-objective function is to maximise the coherency between the committed generators to reach a transient stability margin. The proposed model is converted to a mixed integer linear programming model. The performance of the proposed method of promoting transient stability is investigated using the dynamic IEEE 118-bus test system.

References

    1. 1)
      • 14. Wu, D., Lin, C., Perumalla, V., et al: ‘Impact of grid structure on dynamics of interconnected generators’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 23292337.
    2. 2)
      • 21. Taylor, J.A., Sayler, K.A., Halpin, S.M.: ‘Approximate prediction of generator dynamic coupling using load flow data’. 2006 38th North American Power Symp., Carbondale, IL, USA, 2006, pp. 289294.
    3. 3)
      • 10. Ahmadi, H., Ghasemi, H.: ‘Security-constrained unit commitment with linearized system frequency limit constraints’, IEEE Trans. Power Syst., 2014, 29, (4), pp. 15361545.
    4. 4)
      • 26. Anderson, P.M., Anderson, P.: ‘Power system protection’, vol. 1307, (McGraw-Hill, New York, NY, USA, 1999).
    5. 5)
      • 15. Kundur, P., Balu, N.J., Lauby, M.G.: ‘Power system stability and control’, vol. 7, (McGraw-Hill, New York, NY, USA, 1994).
    6. 6)
      • 18. Ostrowski, J., Anjos, M.F., Vannelli, A.: ‘Tight mixed integer linear programming formulations for the unit commitment problem’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 3946.
    7. 7)
      • 9. Wang, C., Fu, Y.: ‘Fully parallel stochastic security-constrained unit commitment’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 35613571.
    8. 8)
      • 11. Restrepo, J.F., Galiana, F.D.: ‘Unit commitment with primary frequency regulation constraints’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 18361842.
    9. 9)
      • 3. Zárate-Miñano, R., Van Cutsem, T., Milano, F., et al: ‘Securing transient stability using time-domain simulations within an optimal power flow’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 243253.
    10. 10)
      • 16. Yang, B., Vittal, V., Heydt, G.T.: ‘Slow-coherency-based controlled islanding; a demonstration of the approach on the August 14, 2003 blackout scenario’, IEEE Trans. Power Syst., 2006, 21, (4), pp. 18401847.
    11. 11)
      • 13. Khalil, A.M., Iravani, R.: ‘A dynamic coherency identification method based on frequency deviation signals’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 17791787.
    12. 12)
      • 1. Fu, Y., Shahidehpour, M., Li, Z.: ‘Security-constrained unit commitment with AC constraints’, IEEE Trans. Power Syst., 2005, 20, (3), pp. 15381550.
    13. 13)
      • 12. Teng, F., Trovato, V., Strbac, G.: ‘Stochastic scheduling with inertia-dependent fast frequency response requirements’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 15571566.
    14. 14)
      • 24. Available at http://www.kios.ucy.ac.cy/testsystems/index.php/dynamic-ieee-test-systems/ieee-118-bus-modified-test-system. Accessed: 15 January 2018.
    15. 15)
      • 22. Marler, R.T., Arora, J.S.: ‘Survey of multi-objective optimization methods for engineering’, Struct. Multidiscip. Optim., 2004, 26, (6), pp. 369395.
    16. 16)
      • 20. Taylor, J.A., Halpin, S.M.: ‘Approximation of generator coherency based on synchronization coefficients’. 2007 39th Southeastern Symp. System Theory, Macon, GA, USA, 2007, pp. 4751.
    17. 17)
      • 4. Xu, Y., Dong, Z.Y., Meng, K., et al: ‘A hybrid method for transient stability-constrained optimal power flow computation’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 17691777.
    18. 18)
      • 17. Carrion, M., Arroyo, J.M.: ‘A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 13711378.
    19. 19)
      • 5. Sun, Y.-Z., Xinlin, Y., Wang, H.F.: ‘Approach for optimal power flow with transient stability constraints’, IEE Proc., Gener. Transm. Distrib., 2004, 151, (1), pp. 818.
    20. 20)
      • 6. Jiang, Q., Huang, Z.: ‘An enhanced numerical discretization method for transient stability constrained optimal power flow’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 17901797.
    21. 21)
      • 2. Castillo, A., Laird, C., Silva-Monroy, C.A., et al: ‘The unit commitment problem with AC optimal power flow constraints’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 48534866.
    22. 22)
      • 25. I. CPLEX: ‘ILOG CPLEX homepage 2009’. Available at https://www.ibm.com/products/ilog-cplex-optimization-studio, 2009. Accessed: 15 January 2018.
    23. 23)
      • 7. Xu, Y., Dong, Z.Y., Zhang, R., et al: ‘A decomposition-based practical approach to transient stability-constrained unit commitment’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 14551464.
    24. 24)
      • 23. Available at https://github.com/anyacastillo/ucacopf/blob/master/118_ucacopf.dat. Accessed: 15 January 2018.
    25. 25)
      • 8. Jiang, Q., Zhou, B., Zhang, M.: ‘Parallel augment Lagrangian relaxation method for transient stability constrained unit commitment’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 11401148.
    26. 26)
      • 19. Zhang, H., Heydt, G.T., Vittal, V., et al: ‘An improved network model for transmission expansion planning considering reactive power and network losses’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 34713479.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5102
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5102
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address