http://iet.metastore.ingenta.com
1887

Generalised-fast decoupled state estimator

Generalised-fast decoupled state estimator

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Nowadays the fast-decoupled state estimation (FDSE) is widely used in almost every power system control centre. FDSE is effective and efficient for most transmission systems but it may not converge for systems with a large ratio of branch resistance to reactance (R/X); meanwhile the branch current magnitude measurements (BCMMs) cannot be reliably used in FDSE, thereby limiting its applications especially for the distribution systems where BCMMs abound. In this study, the above two problems have been addressed by transforming all measurements so that they can be classified as quasi-real power measurements and quasi-reactive power measurements, leading to a generalised FDSE (GFDSE) with a solid theoretical foundation. The formulation of GFDSE is based on only the assumption, rather than three assumptions used in FDSE. As a result, GFDSE has good adaptability to transmission systems as well as distribution systems; additionally, BCMMs can be reliably used in GFDSE. Case studies based on IEEE benchmark systems and a real grid of China demonstrate that the proposed GFDSE has very good convergence properties for transmission systems and distribution systems; and at the same time, the proposed GFDSE is also superior to FDSE in terms of computational efficiency under almost all cases.

References

    1. 1)
      • 1. Chen, Y., Ma, J., Zhang, P., et al: ‘Robust state estimator based on maximum exponential absolute value’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 15371544.
    2. 2)
      • 2. Primadianto, A., Lu, C.N.: ‘A review on distribution system state estimation’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 38753883.
    3. 3)
      • 3. Celli, G., Pegoraro, P.A., Pilo, F., et al: ‘DMS cyber physical simulation for assessing the impact of state estimation and communication media in smart grid operation’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 24362446.
    4. 4)
      • 4. Aminifar, F., Fotuhi-Firuzabad, M., Safdarian, A., et al: ‘Synchrophasor measurement technology in power systems: panorama and state-of-the-art’, IEEE Access, 2015, 2, pp. 16071628.
    5. 5)
      • 5. Haughton, D.A., Heydt, G.T.: ‘A linear state estimation formulation for smart distribution systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 11871195.
    6. 6)
      • 6. Muscas, C., Pau, M., Pegoraro, P., et al: ‘Effects of measurements and pseudomeasurements correlation in distribution system state estimation’, IEEE Trans. Instrum. Meas., 2014, 63, (12), pp. 28132823.
    7. 7)
      • 7. Alam, S.M.S., Natarajan, B., Pahwa, A.: ‘Distribution grid state estimation from compressed measurements’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 16311642.
    8. 8)
      • 8. Singh, R., Pal, B.C., Jabr, R.A.: ‘Distribution system state estimation through Gaussian mixture model of the load as pseudo-measurement’, IET Gener. Transm. Distrib., 2010, 4, (1), pp. 5059.
    9. 9)
      • 9. Ghosh, A.K., Lubkeman, D.L., Jones, R.H.: ‘Load modeling for distribution circuit state estimation’, IEEE Trans. Power Deliv., 1997, 12, (2), pp. 9991005.
    10. 10)
      • 10. Manitsas, E., Singh, R., Pal, B.C., et al: ‘Distribution system state estimation using an artificial neural network approach for pseudo measurement modeling’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 18881896.
    11. 11)
      • 11. Wu, J., He, Y., Jenkins, N.: ‘A robust state estimator for medium voltage distribution networks’, IEEE Trans. Power Syst., 2012, 28, (2), pp. 10081016.
    12. 12)
      • 12. Hayes, B.P., Gruber, J.K., Prodanovic, M.: ‘A closed-loop state estimation tool for MV network monitoring and operation’, IEEE Trans. Smart Grid, 2014, 6, (4), pp. 21162125.
    13. 13)
      • 13. Lin, W.M., Teng, J.H.: ‘State estimation for distribution systems with zero-injection constraints’, IEEE Trans. Power Syst., 1996, 11, (1), pp. 518524.
    14. 14)
      • 14. Schweppe, F.C., Wildes, J.: ‘Power system static state estimation, part I: exact model’, IEEE Trans. Power Appl. Syst., 1970, PAS-89, (1), pp. 120125.
    15. 15)
      • 15. Schweppe, F.C., Rom, D.B.: ‘Power system static state estimation, part II: approximate model’, IEEE Trans. Power Appl. Syst., 1970, PAS-89, (1), pp. 125130.
    16. 16)
      • 16. Schweppe, F.C.: ‘Power system static state estimation, part III: implementation’, IEEE Trans. Power Appl. Syst., 1970, PAS-89, (1), pp. 130135.
    17. 17)
      • 17. Abur, A., Expósito, A.G.: ‘Power system state estimation: theory and implementation’ (Marcel Dekker, New York, 2004), pp. 157184.
    18. 18)
      • 18. Li, K.: ‘State estimation for power distribution system and measurement impacts’, IEEE Trans. Power Syst., 1996, 11, (2), pp. 911916.
    19. 19)
      • 19. Deng, Y., He, Y., Zhang, B.: ‘A branch estimation-based state estimation method for radial distribution systems’, IEEE Trans. Power Deliv., 2002, 17, (4), pp. 10571062.
    20. 20)
      • 20. Wang, H., Schulz, N.N.: ‘A revised branch current based distribution system state estimation algorithm and meter placement impact’, IEEE Trans. Power Syst., 2004, 19, (1), pp. 207213.
    21. 21)
      • 21. Pau, M., Pegoraro, P.A., Sulis, S.: ‘Efficient branch-current-based distribution system state estimation including synchronized measurements’, IEEE Trans. Instrum. Meas., 2013, 62, (9), pp. 24192429.
    22. 22)
      • 22. Horisberger, H.P., Richard, J.C., Rossier, C.: ‘A fast decoupled static state-estimator for electric power system’, IEEE Trans. Power Appl. Syst., 1976, 98, (1), pp. 208215.
    23. 23)
      • 23. Garcia, A., Montielli, A., Abreu, P.: ‘Fast decoupled state estimation and bad data processing’, IEEE Trans. Power Appl. Syst., 1979, PAS-98, (5), pp. 16451652.
    24. 24)
      • 24. Habiballah, O., Quintana, V.H.: ‘Fast-decoupled rectangular co-ordinate state estimation with efficient data structure management’, IEE Proc. C, Gener. Transm. Distrib., 1991, 138, (5), pp. 462468.
    25. 25)
      • 25. Lin, W.M., Teng, J.H.: ‘Distribution fast decoupled state estimation by measurement pairing’, IEE Proc. Gener. Transm. Distrib., 1996, 143, (1), pp. 4348.
    26. 26)
      • 26. Roy, L., Mohammed, T.A.: ‘Fast super decoupled state estimator for power systems’, IEEE Trans. Power Syst., 1997, 12, (4), pp. 15971603.
    27. 27)
      • 27. Ju, Y., Wu, W., Ge, F., et al: ‘Fast decoupled state estimation for distribution networks considering branch ampere measurements’, IEEE Trans. Smart Grid, 2017, doi: 10.1109/TSG.2017.2709463.
    28. 28)
      • 28. He, G., Dong, S., Qi, J., et al: ‘Robust state estimator based on maximum normal measurement rate’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 20582065.
    29. 29)
      • 29. Chen, Y., Liu, F., Mei, S., et al: ‘A robust WLAV state estimation using optimal transformations’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 21902191.
    30. 30)
      • 30. Caro, E., Conejo, A.J., Minguez, R.: ‘Power system state estimation considering measurement dependencies’, IEEE Trans. Power Syst., 2009, 24, (4), pp. 18751885.
    31. 31)
      • 31. Caro, E., Gustavo, V.: ‘Impact of transformer correlations in state estimation using the unscented transformation’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 368376.
    32. 32)
      • 32. Zhao, J.B., Wang, S., Mili, L., et al: ‘A robust state estimation framework considering measurement correlations and imperfect synchronization’, IEEE Trans. Power Syst., 2018, 33, (4), pp. 46044613.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5076
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5076
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address