http://iet.metastore.ingenta.com
1887

ACOPF for three-phase four-conductor distribution systems: semidefinite programming based relaxation with variable reduction and feasible solution recovery

ACOPF for three-phase four-conductor distribution systems: semidefinite programming based relaxation with variable reduction and feasible solution recovery

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Emerging distribution systems with a proliferation of distributed energy resources are facing with new challenges, such as voltage collapse and power flow congestion in unsymmetrical network configurations. As a fundamental tool that could help quantify these new challenges and further mitigate their impacts on the secure and economic operation of distribution systems, effective AC optimal power flow (ACOPF) models and solution approaches are in urgent need. This study focuses on ACOPF of three-phase four-conductor configured distribution systems, in which neutral conductors and ground resistances are modelled explicitly to reflect practical situation. In addition, by leveraging the Kirchhoff's current law (KCL) theorem and the effect of zero injections, voltage variables of neutrals and zero-injection phases can be effectively eliminated. The ACOPF problem is formulated as a convex semidefinite programming (SDP) relaxation model in complex domain. In recognising possible solution inexactness of SDP relaxation model, a Karush–Kuhn–Tucker condition based process is further proposed to effectively recover feasible solutions to the original ACOPF problem by calculating a set of computational-inexpensive non-linear equations. Numerical studies on a modified IEEE 123-bus system show the effectiveness of the proposed SDP relaxation model with variable reductions and the feasible solution recovery process for three-phase four-conductor configured distribution systems.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5033
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address