http://iet.metastore.ingenta.com
1887

A novel constraint and non-standard characteristics for optimal over-current relays coordination to enhance microgrid protection scheme

A novel constraint and non-standard characteristics for optimal over-current relays coordination to enhance microgrid protection scheme

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Over the last few decades, the inverse over-current protection scheme has been one of the most common schemes utilised in protecting the distribution networks (DNs). Although over-current relays (OCRs) give an excellent protection in extreme failure situations, but continuous integration of distributed generation (DG) and the multi-looped structure of modern DN has made it difficult for the existing industrial OCR's to secure suitable coordination between the different OCR's. The problem of coordinating over-current schemes in the presence of DG needs a complementary between the optimisation techniques employed and the limitation of the manufactured relays existed in the DN for proper discrimination between OCRs. This study investigates the influence of excessive fault current due to DG penetration on conventional IEC characteristics. A novel constraint had been proposed to be added to the formula of the coordination problem – taking into consideration – the limitation of conventional IEC tripping characteristics utilised in nowadays numerical relays. Furthermore, a new non-standard tripping characteristic is suggested to increase the applicability of the optimisation techniques with the existing OCR's. A benchmark IEC microgrid is implemented in ETAP Package. The genetic algorithm is employed to investigate the effectiveness of the two proposed approaches to the conventional optimisation techniques in different operational modes.

References

    1. 1)
      • 1. Lasseter, R.H.: ‘Smart distribution: coupled microgrids’, Proc. IEEE, 2011, 99, (6), pp. 10741082.
    2. 2)
      • 2. Zeineldin, H.H., Sharaf, H.M., Ibrahim, D.K., et al: ‘Optimal protection coordination for meshed distribution systems with dg using dual setting directional over-current relays’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 115123.
    3. 3)
      • 3. Hooshyar, A., Iravani, R.: ‘Microgrid protection’, Proc. IEEE, 2017, 105, (7), pp. 13321353.
    4. 4)
      • 4. Memon, A.A., Kauhaniemi, K.: ‘A critical review of ac microgrid protection issues and available solutions’, Electr. Power Syst. Res., 2015, 129, pp. 2331. Available at http://www.sciencedirect.com/science/article/pii/S0378779615002163.
    5. 5)
      • 5. Hosseini, S.A., Abyaneh, H.A., Sadeghi, S.H.H., et al: ‘An overview of microgrid protection methods and the factors involved’, Renew. Sustain. Energy Rev., 2016, 64, pp. 174186. Available at http://www.sciencedirect.com/science/article/pii/S1364032116302088.
    6. 6)
      • 6. Che, L., Khodayar, M.E., Shahidehpour, M.: ‘Adaptive protection system for microgrids: protection practices of a functional microgrid system’, IEEE Electrific. Mag., 2014, 2, (1), pp. 6680.
    7. 7)
      • 7. Sortomme, E., Venkata, S.S., Mitra, J.: ‘Microgrid protection using communication-assisted digital relays’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 27892796.
    8. 8)
      • 8. Sharaf, H.M., Zeineldin, H.H., El-Saadany, E.: ‘Protection coordination for microgrids with grid-connected and islanded capabilities using communication assisted dual setting directional overcurrent relays’, IEEE Trans. Smart Grid, 2018, 9, (1), pp. 143151.
    9. 9)
      • 9. Sorrentino, E.: ‘Nontraditional relay curves for the coordination of the ground overcurrent function with downstream fuses’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 12841291.
    10. 10)
      • 10. Khandare, P., Deokar, S.A., Dixit, A.M.: ‘Advanced technique in micro grid protection for various fault by using numerical relay’. 2017 2nd Int. Conf. for Convergence in Technology (I2CT), Mumbai, India, 2017, pp. 803807.
    11. 11)
      • 11. Saad, S.M., Naily, N.E., Elhaffar, A., et al: ‘Applying adaptive protection scheme to mitigate the impact of distributed generator on existing distribution network’. 2017 8th Int. Renewable Energy Congress (IREC), Amman, Jordan, 2017, pp. 16.
    12. 12)
      • 12. El-Khattam, W., Sidhu, T.S.: ‘Restoration of directional overcurrent relay coordination in distributed generation systems utilizing fault current limiter’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 576585.
    13. 13)
      • 13. Najy, W.K.A., Zeineldin, H.H., Woon, W.L.: ‘Optimal protection coordination for microgrids with grid-connected and islanded capability’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 16681677.
    14. 14)
      • 14. Pandi, V.R., Zeineldin, H.H., Xiao, W.: ‘Determining optimal location and size of distributed generation resources considering harmonic and protection coordination limits’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 12451254.
    15. 15)
      • 15. Zeineldin, H.H., Mohamed, Y.A.R.I., Khadkikar, V., et al: ‘A protection coordination index for evaluating distributed generation impacts on protection for meshed distribution systems’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 15231532.
    16. 16)
      • 16. Urdaneta, A.J., Perez, L.G., Restrepo, H.: ‘Optimal coordination of directional overcurrent relays considering dynamic changes in the network topology’, IEEE Trans. Power Deliv., 1997, 12, (4), pp. 14581464.
    17. 17)
      • 17. Bedekar, P.P., Bhide, S.R., Kale, V.S.: ‘Optimum coordination of overcurrent relays in distribution system using genetic algorithm’. 2009 Int. Conf. on Power Systems, Kharagpur, India, 2009, pp. 16.
    18. 18)
      • 18. Thangaraj, R., Pant, M., Deep, K.: ‘Optimal coordination of over-current relays using modified differential evolution algorithms’, Eng. Appl. Artif. Intell., 2010, 23, (5), pp. 820829. Advances in metaheuristics for hard optimization: new trends and case studies. Available at http://www.sciencedirect.com/science/article/pii/S0952197610000424.
    19. 19)
      • 19. Rogers, C.W., Ramaswami, R., McGuire, P.F.: ‘Graphical coordination program aids system relaying at consumers power’, IEEE Comput. Appl. Power, 1990, 3, (3), pp. 3035.
    20. 20)
      • 20. Laway, N.A., Gupta, H.O.: ‘Integrated software for optimal directional overcurrent relay coordination’, Electr. Mach. Power Syst., 1994, 22, (1), pp. 125136. Available at https://doi.org/10.1080/07313569408955558.
    21. 21)
      • 21. Zocholl, S.E., Akamine, J.K., Hughes, A.E., et al: ‘Computer representation of overcurrent relay characteristics’, IEEE Trans. Power Deliv., 1989, 4, (3), pp. 16591667.
    22. 22)
      • 22. Elrafie, H.B., Irving, M.R.: ‘Linear programming for directional overcurrent relay coordination in interconnected power systems with constraint relaxation’, Electr. Power Syst. Res., 1993, 27, (3), pp. 209216. Available at http://www.sciencedirect.com/science/article/pii/037877969390047I.
    23. 23)
      • 23. Urdaneta, A.J., Restrepo, H., Marquez, S., et al: ‘Coordination of directional overcurrent relay timing using linear programming’, IEEE Trans. Power Deliv., 1996, 11, (1), pp. 122129.
    24. 24)
      • 24. Chattopadhyay, B., Sachdev, M.S., Sidhu, T.S.: ‘An on-line relay coordination algorithm for adaptive protection using linear programming technique’, IEEE Trans. Power Deliv., 1996, 11, (1), pp. 165173.
    25. 25)
      • 25. Zeineldin, H.H., El-Saadany, E.F., Salama, M.M.A.: ‘Optimal coordination of overcurrent relays using a modified particle swarm optimization’, Electr. Power Syst. Res., 2006, 76, (11), pp. 988995. Available at http://www.sciencedirect.com/science/article/pii/S0378779605002701.
    26. 26)
      • 26. Bedekar, P.P., Bhide, S.R.: ‘Optimum coordination of overcurrent relay timing using continuous genetic algorithm’, Expert Syst. Appl., 2011, 38, (9), pp. 1128611292.
    27. 27)
      • 27. Amraee, T.: ‘Coordination of directional overcurrent relays using seeker algorithm’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 14151422.
    28. 28)
      • 28. Singh, M., Panigrahi, B., Abhyankar, A.: ‘Optimal coordination of directional over-current relays using teaching learning-based optimization (tlbo) algorithm’, Int. J. Electr. Power Energy Syst., 2013, 50, pp. 3341.
    29. 29)
      • 29. Albasri, F.A., Alroomi, A.R., Talaq, J.H.: ‘Optimal coordination of directional overcurrent relays using biogeography-based optimization algorithms’, IEEE Trans. Power Deliv., 2015, 30, (4), pp. 18101820.
    30. 30)
      • 30. Srivastava, A., Tripathi, J.M., Krishan, R., et al: ‘Optimal coordination of overcurrent relays using gravitational search algorithm with dg penetration’, IEEE Trans. Ind. Appl., 2018, 54, (2), pp. 11551165.
    31. 31)
      • 31. Tjahjono, A., Anggriawan, D.O., Faizin, A.K., et al: ‘Adaptive modified firefly algorithm for optimal coordination of overcurrent relays’, IET Gener. Transm. Distrib., 2017, 11, (10), pp. 25752585.
    32. 32)
      • 32. Saha, D., Datta, A., Das, P.: ‘Optimal coordination of directional overcurrent relays in power systems using symbiotic organism search optimisation technique’, IET Gener. Transm. Distrib., 2016, 10, (11), pp. 26812688.
    33. 33)
      • 33. Alam, M.N., Das, B., Pant, V.: ‘An interior point method based protection coordination scheme for directional overcurrent relays in meshed networks’, Int. J. Electr. Power Energy Syst., 2016, 81, pp. 153164. Available at http://www.sciencedirect.com/science/article/pii/S0142061515300053.
    34. 34)
      • 34. Saleh, K., Zeineldin, H., Al-Hinai, A., et al: ‘Optimal coordination of directional overcurrent relays using a new time-current-voltage characteristic’. IEEE Trans. Power Del., 2015, 30, (2), pp. 537544.
    35. 35)
      • 35. Birla, D., Maheshwari, R.P., Gupta, H.O.: ‘A new nonlinear directional overcurrent relay coordination technique, and banes and boons of near-end faults based approach’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 11761182.
    36. 36)
      • 36. Saleh, K.A., Zeineldin, H.H., Al-Hinai, A., et al: ‘Dual-setting characteristic for directional overcurrent relays considering multiple fault locations’, IET Gener. Transm. Distrib., 2015, 9, (12), pp. 13321340.
    37. 37)
      • 37. Purwar, E., Vishwakarma, D.N., Singh, S.P.: ‘A novel constraints reduction based optimal relay coordination method considering variable operational status of distribution system with dgs’, IEEE Trans. Smart Grid, 2017, PP, (99), pp. 11.
    38. 38)
      • 38. Sharaf, H.M., Zeineldin, H.H., Ibrahim, D.K., et al: ‘Protection coordination of directional overcurrent relays considering fault current direction’. IEEE PES Innovative Smart Grid Technologies, Europe, 2014, pp. 15.
    39. 39)
      • 39. Aghdam, T.S., Karegar, H.K., Zeineldin, H.H.: ‘Transient stability constrained protection coordination for distribution systems with dg’, IEEE Trans. Smart Grid, 2017, PP, (99), pp. 11.
    40. 40)
      • 40. Damchi, Y., Sadeh, J., Mashhadi, H.R.: ‘Optimal coordination of distance and overcurrent relays considering a non-standard tripping characteristic for distance relays’, IET Gener. Transm. Distrib., 2016, 10, (6), pp. 14481457.
    41. 41)
      • 41. Singh, M., Vishnuvardhan, T., Srivani, S.G.: ‘Adaptive protection coordination scheme for power networks under penetration of distributed energy resources’, IET Gener. Transm. Distrib., 2016, 10, (15), pp. 39193929.
    42. 42)
      • 42. Elneweihi, A.F., Schweitzer, E.O., Feltis, M.W.: ‘Negative-sequence overcurrent element application and coordination in distribution protection’, IEEE Trans. Power Deliv., 1993, 8, (3), pp. 915924.
    43. 43)
      • 43. Zocholl, S.E., Schweitzer, E.O., Aliaga-Zegarra, A.: ‘Thermal protection of induction motors enhanced by interactive electrical and thermal models’, IEEE Power Eng. Rev., 1984, PER-4, (7), pp. 4848.
    44. 44)
      • 44. Swift, G.W., Zocholl, E.S., Bajpai, M., et al: ‘Adaptive transformer thermal overload protection’, IEEE Trans. Power Deliv., 2001, 16, (4), pp. 516521.
    45. 45)
      • 45. Aghdam, T.S., Karegar, H.K., Zeineldin, H.: ‘Optimal coordination of double inverse overcurrent relays for stable operation of dgs’, IEEE Trans. Ind. Inf., 2018, PP, (99), pp. 11.
    46. 46)
      • 46. Sharaf, H.M., Zeineldin, H.H., Ibrahim, D.K., et al: ‘A proposed coordination strategy for meshed distribution systems with dg considering user-defined characteristics of directional inverse time overcurrent relays’, Int. J. Electr. Power Energy Syst., 2015, 65, pp. 4958. Available at http://www.sciencedirect.com/science/article/pii/S0142061514005791.
    47. 47)
      • 47. Salazar, C.A.C., Enríquez, A.C., Schaeffer, S.E.: ‘Directional overcurrent relay coordination considering non-standardized time curves’, Electr. Power Syst. Res., 2015, 122, pp. 4249.
    48. 48)
      • 48. Singh, M., Telukunta, V., Srivani, S.G.: ‘Enhanced real time coordination of distance and user defined over current relays’, Int. J. Electr. Power Energy Syst., 2018, 98, pp. 430441. Available at http://www.sciencedirect.com/science/article/pii/S0142061517317763.
    49. 49)
      • 49. Standard, I.: ‘Single input energizing quantity measuring relays with dependent specified time’. Publication, 1976.
    50. 50)
      • 50. Protection, O.. ‘7sj62 siprotec 4 7sj62 multifunction protection relay, siemens, utg. 7’, Citerad på sid, 2006, 38, p. 44.
    51. 51)
      • 51. Alsthom, G.: ‘Protective relays application guide’, Baldini and Mansell, (English Electric Company Ltd., London, UK, 1987).
    52. 52)
      • 52. Feltis, M.: ‘Faster distribution bus tripping with the sel-251/251c relays’, SEL Application Guide (AG92-03), 1992.
    53. 53)
      • 53. Das, J.: ‘Power system protective relaying’ (CRC Press, Boca Raton, FL, USA, 2017).
    54. 54)
      • 54. Fani, B., Bisheh, H., Sadeghkhani, I.: ‘A protection coordination scheme for distribution networks with high penetration of photovoltaic generators’, IET Gener. Transm. Distrib., 2018, 12, (8), pp. 18021814.
    55. 55)
      • 55. Sweeting, D.: ‘Applying iec 60909, short-circuit current calculations’. 2011 Record of Conf. Papers Industry Applications Society 58th Annual IEEE Petroleum and Chemical Industry Conf. (PCIC), Toronto, ON, Canada, 2011, pp. 16.
    56. 56)
      • 56. Coleman, T., Branch, M.A., Grace, A.: ‘Optimization toolbox’. For Use with MATLAB User's Guide for MATLAB 5, Version 2, Release II, 1999.
    57. 57)
      • 57. Huang, H.T., Chen, C.L.: ‘Emerging organizational structure for knowledge-oriented teamwork using genetic algorithm’, Expert Syst. Appl., 2009, 36, (10), pp. 1213712142. Available at http://www.sciencedirect.com/science/article/pii/S0957417409003121.
    58. 58)
      • 58. PowerStation, E.: ‘4.0 user guide, operation technologyInc, 2001.
    59. 59)
      • 59. Kar, S.: ‘A comprehensive protection scheme for micro-grid using fuzzy rule base approach’, Energy Syst., 2017, 8, (3), pp. 449464. Available at https://doi.org/10.1007/s12667-016-0204-x.
    60. 60)
      • 60. Schossig, T.: ‘Application of settings and sgs in iec 61850’, J. Eng., 2018, 2018, pp. 967970(3). Available at http://digital-library.theiet.org/content/journals/10.1049/joe.2018.0191.
    61. 61)
      • 61. Xyngi, I., Popov, M.: ‘An intelligent algorithm for the protection of smart power systems’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 15411548.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5021
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5021
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address