access icon free Improved power management control strategy for renewable energy-based DC micro-grid with energy storage integration

This study presents an improved power management control strategy of a hybrid direct current (DC) micro-grid (MG) system consisting of photovoltaic cell, wind turbine generator, battery energy storage (BES), fuel cell (FC), and electrolyser. Based on the voltage and state of charge of BES, FC, and electrolyser, the proposed control scheme improved the dynamics of the DC-link voltage and contributes a better power management between each generation/source and load. A gain control technique is implemented in the grid-side inverter controller to regulate the modulation index and improving the voltage stability of the DC-link. Furthermore, the PI-controller gains of BES are tuned dynamically based on the deviation in voltage and its derivative using Takagi–Sugeno-fuzzy control to enhance the transient response of the voltage. For a reliable operation of the DC MG under standalone or prolonged islanding mode of operation, a priority-based load shedding algorithm is proposed for maintaining proper power coordination between different energy sources and storage devices. Owing to smoother and faster voltage response, the proposed control schemes can comply with the grid code requirements of the changing configuration of the modern renewable energy integrated DC MG. The effectiveness of the proposed control strategy is tested by comparing the existing scheme through MATLAB/Simulink®.

Inspec keywords: load shedding; distributed power generation; transient response; wind turbines; power generation control; renewable energy sources; power grids; fuzzy control; PI control; invertors; energy storage

Other keywords: transient response; different energy sources; modulation index regulation; DC-link voltage; wind turbine generator; renewable energy-based DC microgrid; energy storage integration; gain control technique; improved power management control strategy; BES; prolonged islanding mode; smoother response; battery energy storage; voltage stability; priority-based load shedding algorithm; DC MG; PI-controller gains; control scheme; hybrid direct current microgrid system; faster voltage response; proper power coordination; state of charge; modern renewable energy; electrolyser; Takagi–Sugeno-fuzzy control; grid-side inverter controller

Subjects: Power system management, operation and economics; Fuzzy control; Control of electric power systems; Power system control; Distributed power generation; DC-AC power convertors (invertors)

References

    1. 1)
      • 15. Chen, D., Xu, L.: ‘Autonomous DC voltage control of a DC micro-grid with multiple slack terminals’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 18971905.
    2. 2)
      • 4. Katiraei, F., Iravani, M.R.: ‘Power management strategies for a microgrid with multiple distributed generation units’, IEEE Trans. Power Syst., 2006, 21, (4), pp. 18211831.
    3. 3)
      • 27. Haque, M.E., Negnevitsky, M., Muttaqi, K.M.: ‘A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator’, IEEE Trans. Ind. Appl., 2010, 46, pp. 331339.
    4. 4)
      • 21. Gupta, A., Doolla, S., Chatterjee, K.: ‘Hybrid AC–DC microgrid: systematic evaluation of control strategies’, IEEE Trans. Smart Grid, 2018, 9, (4), pp. 38303843.
    5. 5)
      • 5. Chen, Y.K., Wu, Y.C., Song, C.C., et al: ‘Design and implementation of energy management system with fuzzy control for DC microgrid systems’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 15631570.
    6. 6)
      • 9. Chen, C.L., Wang, Y., Lai, J.S., et al: ‘Design of parallel inverters for smooth mode transfer micro-grid applications’, IEEE Trans. Power Electron., 2010, 25, (1), pp. 615.
    7. 7)
      • 19. Yin, C., Wu, H., Locment, F., et al: ‘Energy management of DC microgrid based on photovoltaic combined with diesel generator and super capacitor’, Energy Convers. Manage., 2017, 132, pp. 1427.
    8. 8)
      • 30. Padulles, J., Ault, G. W., McDonald, J. R.: ‘An integrated SOFC plant dynamic model for power systems simulation’, J. Power Sources, 2000, 86, pp. 495500.
    9. 9)
      • 37. Fedele, G., Picardi, C., Sgro, D.: ‘A power electrical signal tracking strategy based on the modulating functions method’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 40794087.
    10. 10)
      • 24. Chen, Y.K., Wu, Y.C., Song, C.C., et al: ‘Design and implementation of energy management system with fuzzy control for DC micro-grid systems’, IEEE Trans. Power Electron., 2013, 28, (10), pp. 15631570.
    11. 11)
      • 17. Zhao, J., Dörfler, F.: ‘Distributed control and optimization in DC microgrids’, Automatica, 2015, 61, pp. 1826.
    12. 12)
      • 31. Zhu, Y., Tomsovic, K.: ‘Development of models for analyzing the load-following performance of microturbines and fuel cells’, Electron. Power Syst. Res., 2002, 62, pp. 111.
    13. 13)
      • 7. Anand, S., Fernandes, B.G.: ‘Reduced-order model and stability analysis of low-voltage DC microgrid’, IEEE Trans. Ind. Electron., 2013, 60, (11), pp. 50405048.
    14. 14)
      • 22. Merai, M., Naouar, M.W., Belkhodja, I.S.: ‘An improved dc-link voltage control strategy for grid connected converters’, IEEE Trans. Power Electron., 2017, pp. 18.
    15. 15)
      • 8. Sani, A.M., Iravani, R.: ‘Potential-function based control of a microgrid in islanded and grid-connected modes’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 18831891.
    16. 16)
      • 35. Reznik, A., Simoes, M. G., Durra, A. A., et al: ‘LCL filter design and performance analysis for grid-interconnected systems’, IEEE Trans. Ind. Appl., 2014, 50, (2), pp. 12251232.
    17. 17)
      • 39. Oviedo, E.I.V., Lopez, M.G.O., Saldierna, , et al: ‘Modelling study of a combined fuel-cell stack/switch mode DC–DC converter’, J. Fuel Cell Sci. Technol., 2014, 11, (1), pp. 15.
    18. 18)
      • 18. Ali, E. S., Abd Elazim, S.M., Abdelaziz, A.Y.: ‘Ant lion optimization algorithm for renewable distributed generations’, Energy, 2016, 116, pp. 445458.
    19. 19)
      • 29. Xia, Y., Ahmed, K.H., Williams, B.W.: ‘Wind turbine power coefficient analysis of a new maximum power point tracking technique’, IEEE Trans. Ind. Electron., 2013, 60, (3), pp. 11221132.
    20. 20)
      • 16. Kakigano, H., Miura, Y., Ise, T.: ‘Distribution voltage control for DC microgrids using fuzzy control and gain-scheduling technique’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 22462258.
    21. 21)
      • 23. Sahoo, N.C., Mohapatro, S., Senapati, M.K.: ‘A SoC based voltage control strategy for DC microgrid’. IEEE Electrical Power and Energy Conference (EPEC), London, October 2015, pp. 185190.
    22. 22)
      • 2. Xu, L., Chen, D.: ‘Control and operation of a DC micro grid with variable generation and energy storage’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 25132522.
    23. 23)
      • 12. Laaksonen, H. J.: ‘Protection principles for future microgrids’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 29102918.
    24. 24)
      • 14. Eghtedarpour, N., Farjah, E.: ‘Control strategy for distributed integration of photovoltaic and energy storage systems in DC micro-grids’, Renew. Energy, 2012, 45, pp. 96110.
    25. 25)
      • 11. Sortomme, E., Venkata, S.S., Mitra, J.: ‘Microgrid protection using communication-assisted digital relays’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 27892796.
    26. 26)
      • 26. Malla, S.G., Bhende, C.N.: ‘Voltage control of stand-alone wind and solar energy system’, Electron. Power Energy Syst., 2014, 56, pp. 361373.
    27. 27)
      • 3. Chen, D., Xu, L., Yao, L.: ‘DC voltage variation based autonomous control of DC micro-grids’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 637648.
    28. 28)
      • 6. Seo, G.S., Lee, K.C., Cho, B.H.: ‘A new DC anti-islanding technique of electrolytic capacitor-less photovoltaic interface in DC distribution systems’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 16321641.
    29. 29)
      • 20. Ameur, K., Hadjaissa, A., Cheknane, A., et al: ‘DC-bus voltage control based on power flow management using direct sliding mode control for standalone photovoltaic systems’, Electr. Power Compon. Syst., 2017, 45, (10), pp. 11061117.
    30. 30)
      • 28. Haque, M.E., Muttaqi, K.M., Negnevitsky, M.: ‘Control of a standalone variable speed wind turbine with a permanent magnet’. IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, July 2008, pp. 2024.
    31. 31)
      • 1. Kurohane, K., Uehara, A., Senjyu, T., et al: ‘Control strategy for a distributed DC power system with renewable energy’, Renew. Energy, 2011, 36, (1), pp. 4249.
    32. 32)
      • 25. Bhende, C.N., Misra, S., Malla, S.G.: ‘Permanent magnet synchronous generator based standalone wind energy supply system’, IEEE Trans. Sustain. Energy, 2011, 2, (4), pp. 361373.
    33. 33)
      • 36. Filho, R. M. S., Seixas, P. F., Cortizo, P. C., et al: ‘Comparison of three single-phase PLL algorithms for UPS applications’, IEEE Trans. Ind. Electron., 2008, 55, (8), pp. 29232932.
    34. 34)
      • 10. Ahn, S., Park, J., Chung, I., et al: ‘Power sharing method of multiple distributed generators considering control modes and configuration of a micro-grid’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 20072016.
    35. 35)
      • 32. Ulleberg, O.: ‘Modeling of advanced alkaline electrolyzer: a system simulation approach’, Int. J. Hydrog. Energy, 2003, 28, pp. 2133.
    36. 36)
      • 34. Haruni, A. M. O., Negnevitsky, M., Haque, Md. E., et al: ‘A novel operation and control strategy for a standalone hybrid renewable power system’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 402413.
    37. 37)
      • 38. Villalva, M. G., Siqueira, T. G., Ruppert, E.: ‘Voltage regulation of photovoltaic arrays: small-signal analysis and control design’, IET Power Electron., 2010, 3, (6), pp. 869880.
    38. 38)
      • 13. Noroozian, R., Abedi, M., Gharehpetian, G. B., et al: ‘Combined operation of DC isolated distribution and PV systems for supplying unbalanced AC loads’, Renew. Energy, 2009, 34, pp. 899908.
    39. 39)
      • 33. Pradhan, C., Bhende, C. N.: ‘Enhancement in primary frequency regulation of wind generator using fuzzy-based control’, Electr. Power Compon. Syst., 2016, 44, (15), pp. 16691682.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5019
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5019
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading