access icon free Iterative control method of voltage source converters for various high-power applications

High-voltage and high-power voltage source converters (VSCs) are usually operated at low switching frequencies to minimise the switching losses. This study presents a new control method suitable for low switching frequencies. It consists of two stages. In the first stage, a simple proportional controller is used to suppress any overvoltage or overcurrent during the transients. Then, after the control variables have settled to steady-state values, the iterative controller is activated to finely adjust the modulation index and firing angle of the converter to fulfil the control objectives. To justify the proposed control method, various control objectives are realised in a 10 MVA VSC system, and the results are validated by PSCAD/EMTDC and hardware-in-the-loop simulation. The results show that state variables converge within a few iterative steps, and the transient response is sufficiently fast. The proposed method is shown to perform better than the conventional PI control for eliminating the power imbalance and DC second harmonics due to the imbalance at the grid voltage.

Inspec keywords: proportional control; voltage control; PI control; hardware-in-the loop simulation; iterative methods; PWM power convertors; power system control; power grids; transient response

Other keywords: iterative control method; PI control; high-power voltage source converters; hardware-in-the-loop simulation; high-voltage source converters; modulation index; proportional controller; high-power applications; grid voltage; PSCAD/EMTDC; firing angle

Subjects: Voltage control; Interpolation and function approximation (numerical analysis); Power system control; Control of electric power systems; Interpolation and function approximation (numerical analysis)

References

    1. 1)
      • 1. Wu, B.: ‘High-power converters and ac drive’ (IEEE Press, New Jersey, USA, 2006).
    2. 2)
      • 11. Bruno, S., Lamonaca, S., Rotondo, G., et al: ‘Unbalanced three-phase optimal power flow for smart grids’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 45044513.
    3. 3)
      • 3. Preindl, M., Schaltz, E., Thogersen, P.: ‘Switching frequency reduction using model predictive direct current control for high-power voltage source inverters’, IEEE Trans. Ind. Electron., 2011, 58, (7), pp. 28262835.
    4. 4)
      • 15. Martinez, J.M.: ‘Practical quasi-Newton methods for solving nonlinear systems’, J. Comput. Appl. Math., 2000, 124, (1–2), pp. 97121.
    5. 5)
      • 20. El-Habrouk, M., Darwish, M.K., Mehta, P.: ‘Active power filters: a review’, IEE Proc. - Electr. Power Appl., 2000, 147, (5), pp. 403413.
    6. 6)
      • 5. Yaramasu, V., Wu, B., Chen, J.: ‘Model-predictive control of grid-tied four-level diode-clamped inverters for high-power wind energy conversion systems’, IEEE Trans. Power Electron., 2014, 29, (6), pp. 28612873.
    7. 7)
      • 14. Tang, Y., Dvijotham, K., Low, S.: ‘Real-time optimal power flow’, IEEE Trans. Smart Grid, 2017, 8, (6), pp. 29632973.
    8. 8)
      • 24. Hochgraf, C., Lasseter, R.H.: ‘Statcom controls for operation with unbalanced voltages’, IEEE Trans. Power Deliv., 1998, 13, (2), pp. 538544.
    9. 9)
      • 7. Lai, Y.S., Lin, C.K., Chuang, F.P., et al: ‘Model-free predictive current control for three-phase ac/dc converters’, IET Electr. Power Appl., 2017, 11, (5), pp. 729739.
    10. 10)
      • 10. Semlyen, A., De Leon, F.: ‘Quasi-Newton power flow using partial Jacobian updates’, IEEE Trans. Power Syst., 2001, 16, (3), pp. 332339.
    11. 11)
      • 6. Balram, P., Carlson, O., Tuan, L.A.: ‘Demonstration of voltage control in a real distribution system using model predictive control’, IET Gener. Transm. Distrib., 2017, 11, (16), pp. 39223929.
    12. 12)
      • 16. Burden, R.L., Faires, J.D.: ‘Numerical analysis’, The Prindle, Weber and Schmidt Series in Mathematics, (PWS-Kent Publishing Company, Boston, 1989, 4th edn.).
    13. 13)
      • 8. Lin, C.K., Yu, J.T., Lai, Y.S., et al: ‘Improved model-free predictive current control for synchronous reluctance motor drives’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 39423953.
    14. 14)
      • 12. Nie, Y., Chung, C., Xu, N.: ‘System state estimation considering ev penetration with unknown behavior using quasi-Newton method’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 46054615.
    15. 15)
      • 23. Pillay, P., Manyage, M.: ‘Definitions of voltage unbalance’, IEEE Power Eng. Rev., 2001, 21, (5), pp. 4951.
    16. 16)
      • 13. Lian, K.L., Lehn, P.W.: ‘Steady-state solution of a voltage-source converter with full closed-loop control’, IEEE Trans. Power Deliv., 2006, 21, (4), pp. 20712081.
    17. 17)
      • 21. Yazdani, A., Iravani, R.: ‘A unified dynamic model and control for the voltage-sourced converter under unbalanced grid conditions’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 16201629.
    18. 18)
      • 9. Lo, Y.S., Lee, C.S., Wang, W.S., et al: ‘A new control algorithm of voltage source converter systems for medium- and high-power applications’. 2017 6th Int. Conf. on Clean Electrical Power (ICCEP), Santa Margherita Ligure, Italy, 2017, pp. 614619.
    19. 19)
      • 4. Kouro, S., Cortes, P., Vargas, R., et al: ‘Model predictive control - a simple and powerful method to control power converters’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 18261838.
    20. 20)
      • 17. Wu, R., Dewan, S.B., Slemon, G.R.: ‘Analysis of an ac-to-dc voltage source converter using pwm with phase and amplitude control’, IEEE Trans. Ind. Appl., 1991, 27, (2), pp. 355364.
    21. 21)
      • 18. Lian, K.L., Lehn, P.W.: ‘Real-time simulation of voltage source converters based on time average method’, IEEE Trans. Power Syst., 2005, 20, (1), pp. 110118.
    22. 22)
      • 2. Milanes, V., Villagra, J., Godoy, J., et al: ‘Comparing fuzzy and intelligent pi controllers in stop-and-go manoeuvres’, IEEE Trans. Control Syst. Technol., 2012, 20, (3), pp. 770778.
    23. 23)
      • 19. Liu, Y., Xi, Z., Liang, Z., et al: ‘Controller hardware-in-the-loop validation for a 10 mva eto-based statcom for wind farm application’. 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 2009, pp. 13981403.
    24. 24)
      • 22. Cheng, Y., Qian, C., Crow, M.L., et al: ‘A comparison of diode-clamped and cascaded multilevel converters for a statcom with energy storage’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 15121521.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5006
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading