Iterative control method of voltage source converters for various high-power applications

Iterative control method of voltage source converters for various high-power applications

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

High-voltage and high-power voltage source converters (VSCs) are usually operated at low switching frequencies to minimise the switching losses. This study presents a new control method suitable for low switching frequencies. It consists of two stages. In the first stage, a simple proportional controller is used to suppress any overvoltage or overcurrent during the transients. Then, after the control variables have settled to steady-state values, the iterative controller is activated to finely adjust the modulation index and firing angle of the converter to fulfil the control objectives. To justify the proposed control method, various control objectives are realised in a 10 MVA VSC system, and the results are validated by PSCAD/EMTDC and hardware-in-the-loop simulation. The results show that state variables converge within a few iterative steps, and the transient response is sufficiently fast. The proposed method is shown to perform better than the conventional PI control for eliminating the power imbalance and DC second harmonics due to the imbalance at the grid voltage.


    1. 1)
      • 1. Wu, B.: ‘High-power converters and ac drive’ (IEEE Press, New Jersey, USA, 2006).
    2. 2)
      • 2. Milanes, V., Villagra, J., Godoy, J., et al: ‘Comparing fuzzy and intelligent pi controllers in stop-and-go manoeuvres’, IEEE Trans. Control Syst. Technol., 2012, 20, (3), pp. 770778.
    3. 3)
      • 3. Preindl, M., Schaltz, E., Thogersen, P.: ‘Switching frequency reduction using model predictive direct current control for high-power voltage source inverters’, IEEE Trans. Ind. Electron., 2011, 58, (7), pp. 28262835.
    4. 4)
      • 4. Kouro, S., Cortes, P., Vargas, R., et al: ‘Model predictive control - a simple and powerful method to control power converters’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 18261838.
    5. 5)
      • 5. Yaramasu, V., Wu, B., Chen, J.: ‘Model-predictive control of grid-tied four-level diode-clamped inverters for high-power wind energy conversion systems’, IEEE Trans. Power Electron., 2014, 29, (6), pp. 28612873.
    6. 6)
      • 6. Balram, P., Carlson, O., Tuan, L.A.: ‘Demonstration of voltage control in a real distribution system using model predictive control’, IET Gener. Transm. Distrib., 2017, 11, (16), pp. 39223929.
    7. 7)
      • 7. Lai, Y.S., Lin, C.K., Chuang, F.P., et al: ‘Model-free predictive current control for three-phase ac/dc converters’, IET Electr. Power Appl., 2017, 11, (5), pp. 729739.
    8. 8)
      • 8. Lin, C.K., Yu, J.T., Lai, Y.S., et al: ‘Improved model-free predictive current control for synchronous reluctance motor drives’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 39423953.
    9. 9)
      • 9. Lo, Y.S., Lee, C.S., Wang, W.S., et al: ‘A new control algorithm of voltage source converter systems for medium- and high-power applications’. 2017 6th Int. Conf. on Clean Electrical Power (ICCEP), Santa Margherita Ligure, Italy, 2017, pp. 614619.
    10. 10)
      • 10. Semlyen, A., De Leon, F.: ‘Quasi-Newton power flow using partial Jacobian updates’, IEEE Trans. Power Syst., 2001, 16, (3), pp. 332339.
    11. 11)
      • 11. Bruno, S., Lamonaca, S., Rotondo, G., et al: ‘Unbalanced three-phase optimal power flow for smart grids’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 45044513.
    12. 12)
      • 12. Nie, Y., Chung, C., Xu, N.: ‘System state estimation considering ev penetration with unknown behavior using quasi-Newton method’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 46054615.
    13. 13)
      • 13. Lian, K.L., Lehn, P.W.: ‘Steady-state solution of a voltage-source converter with full closed-loop control’, IEEE Trans. Power Deliv., 2006, 21, (4), pp. 20712081.
    14. 14)
      • 14. Tang, Y., Dvijotham, K., Low, S.: ‘Real-time optimal power flow’, IEEE Trans. Smart Grid, 2017, 8, (6), pp. 29632973.
    15. 15)
      • 15. Martinez, J.M.: ‘Practical quasi-Newton methods for solving nonlinear systems’, J. Comput. Appl. Math., 2000, 124, (1–2), pp. 97121.
    16. 16)
      • 16. Burden, R.L., Faires, J.D.: ‘Numerical analysis’, The Prindle, Weber and Schmidt Series in Mathematics, (PWS-Kent Publishing Company, Boston, 1989, 4th edn.).
    17. 17)
      • 17. Wu, R., Dewan, S.B., Slemon, G.R.: ‘Analysis of an ac-to-dc voltage source converter using pwm with phase and amplitude control’, IEEE Trans. Ind. Appl., 1991, 27, (2), pp. 355364.
    18. 18)
      • 18. Lian, K.L., Lehn, P.W.: ‘Real-time simulation of voltage source converters based on time average method’, IEEE Trans. Power Syst., 2005, 20, (1), pp. 110118.
    19. 19)
      • 19. Liu, Y., Xi, Z., Liang, Z., et al: ‘Controller hardware-in-the-loop validation for a 10 mva eto-based statcom for wind farm application’. 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 2009, pp. 13981403.
    20. 20)
      • 20. El-Habrouk, M., Darwish, M.K., Mehta, P.: ‘Active power filters: a review’, IEE Proc. - Electr. Power Appl., 2000, 147, (5), pp. 403413.
    21. 21)
      • 21. Yazdani, A., Iravani, R.: ‘A unified dynamic model and control for the voltage-sourced converter under unbalanced grid conditions’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 16201629.
    22. 22)
      • 22. Cheng, Y., Qian, C., Crow, M.L., et al: ‘A comparison of diode-clamped and cascaded multilevel converters for a statcom with energy storage’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 15121521.
    23. 23)
      • 23. Pillay, P., Manyage, M.: ‘Definitions of voltage unbalance’, IEEE Power Eng. Rev., 2001, 21, (5), pp. 4951.
    24. 24)
      • 24. Hochgraf, C., Lasseter, R.H.: ‘Statcom controls for operation with unbalanced voltages’, IEEE Trans. Power Deliv., 1998, 13, (2), pp. 538544.

Related content

This is a required field
Please enter a valid email address