© The Institution of Engineering and Technology
Traditionally, electric system operators have dispatched generation to minimise total production costs ignoring the flexibility of the AC transmission system (ACTS). One available option to enhance power system security is to harness the flexibility of the ACTS, where a variety of flexible AC transmission system (FACTS) devices can be incorporated in the ACTS. However, utilisation of FACTS devices is limited today due to the complexities that these devices introduce to the AC optimal power flow (ACOPF) problem. The mathematical representation of the full ACOPF problem, with the added modelling of FACTS devices, is a nonlinear programming (NLP) optimisation problem, which is computationally burdensome for largescale systems. This study presents a method to convert this NLP problem into a mixedinteger linear program (MILP) where a certain level of solution accuracy can be achieved for a time budget. In this regard, this study first proposes a linear AC OPF model, using which the OPF solution with the operation of FACTS devices is obtained. In addition, the loadability of the power systems is utilised to quantify the impacts of FACTS devices on improving the security of system. The OPF problem including FACTS devices based on a linearised model is tested on a 6bus and the IEEE 118bus test systems.
References


1)

1. Lehmkoster, C.: ‘Security constrained optimal power flow for an economical operation of FACTSdevices in liberalized energy markets’, IEEE Trans. Power Deliv., 2002, 17, pp. 603–608.

2)

2. Bertsekas, D. P.: ‘Nonlinear programming’ (Athena Scientific Belmont, Nashua, NH, USA, 1999).

3)

3. Mukherjee, A., Mukherjee, V.: ‘Solution of optimal power flow with FACTS devices using a novel oppositional krill herd algorithm’, Int. J. Electr. Power Energy Syst., 2016, 78, pp. 700–714.

4)

4. Nireekshana, T., Rao, G. K., Raju, S. S. N.: ‘Enhancement of ATC with FACTS devices using realcode genetic algorithm’, Int. J. Electr. Power Energy Syst., 2012, 43, pp. 1276–1284.

5)

5. Pillay, A., Karthikeyan, S. P., Kothari, D.: ‘Congestion management in power systems – a review’, Int. J. Electr. Power Energy Syst., 2015, 70, pp. 83–90.

6)

6. Berizzi, A., Delfanti, M., Marannino, P., et al: ‘Enhanced securityconstrained OPF with FACTS devices’, IEEE Trans. Power Syst., 2005, 20, pp. 1597–1605.

7)

7. Gasperic, S., Mihalic, R.: ‘The impact of serial controllable FACTS devices on voltage stability’, Int. J. Electr. Power Energy Syst., 2015, 64, pp. 1040–1048.

8)

8. Ghahremani, E., Kamwa, I.: ‘Optimal placement of multipletype FACTS devices to maximize power system loadability using a generic graphical user interface’, IEEE Trans. Power Syst., 2013, 28, pp. 764–778.

9)

9. SahraeiArdakani, M., Hedman, K.W.: ‘A fast LP approach for enhanced utilization of variable impedance based FACTS devices’, IEEE Trans. Power Syst., 2016, 31, pp. 2204–2213.

10)

10. SahraeiArdakani, M., Hedman, K. W.: ‘Dayahead corrective adjustment of FACTS reactance: a linear programming approach’, IEEE Trans. Power Syst., 2016, 31, pp. 2867–2875.

11)

11. ZarateMinano, R., Conejo, A., Milano, F.: ‘OPFbased security redispatching including FACTS devices’, IET Gener. Transm. Distrib., 2008, 2, pp. 821–833.

12)

12. Akbari, T., Bina, M. T.: ‘Linear approximated formulation of AC optimal power flow using binary discretisation’, IET Gener. Transm. Distrib., 2016, 10, pp. 1117–1123.

13)

13. Nasri, A., Conejo, A. J., Kazempour, S. J., et al: ‘Minimizing wind power spillage using an OPF with FACTS devices’, IEEE Trans. Power Syst., 2014, 29, pp. 2150–2159.

14)

14. Henneaux, P., Kirschen, D. S.: ‘Probabilistic security analysis of optimal transmission switching’, IEEE Trans. Power Syst., 2016, 31, pp. 508–517.

15)

15. Nagalakshmi, S., Kamaraj, N.: ‘Online evaluation of loadability limit for pool model with TCSC using back propagation neural network’, Int. J. Electr. Power Energy Syst., 2013, 47, pp. 52–60.

16)

16. Zhang, H., Heydt, G. T., Vittal, V., et al: ‘An improved network model for transmission expansion planning considering reactive power and network losses’, IEEE Trans. Power Syst., 2013, 28, pp. 3471–3479.

17)

17. Jordehi, A. R.: ‘Particle swarm optimisation (PSO) for allocation of FACTS devices in electric transmission systems: a review’, Renew. Sust. Energy Rev., 2015, 52, pp. 1260–1267.

18)

18. Ongsakul, W., Bhasaputra, P.: ‘Optimal power flow with FACTS devices by hybrid TS/SA approach’, Int. J. Electr. Power Energy Syst., 2002, 24, pp. 851–857.

19)

19. Khorsandi, A., Hosseinian, S., Ghazanfari, A.: ‘Modified artificial bee colony algorithm based on fuzzy multiobjective technique for optimal power flow problem’, Electr. Power Syst. Res., 2013, 95, pp. 206–213.

20)

20. SahraeiArdakani, M., Blumsack, S. A.: ‘Transfer capability improvement through marketbased operation of series FACTS devices’, 2015.

21)

21. Misener, R., Floudas, C.: ‘Piecewiselinear approximations of multidimensional functions’, J. Optim. Theory Appl., 2010, 145, pp. 120–147.

22)

22. Beale, E., Forrest, J. J.: ‘Global optimization using special ordered sets’, Math. Program., 1976, 10, pp. 52–69.

23)

23. FuerteEsquivel, C., Acha, E., AmbrizPerez, H.: ‘A thyristor controlled series compensator model for the power flow solution of practical power networks’, IEEE Trans. Power Syst., 2000, 15, pp. 58–64.

24)

24. AmbrizPerez, H., Acha, E., FuerteEsquivel, C.: ‘Advanced SVC models for Newton–Raphson load flow and Newton optimal power flow studies’, IEEE Trans. Power Syst., 2000, 15, pp. 129–136.

25)

26)

27)

28)

28. Khodaei, A., Shahidehpour, M.: ‘Transmission switching in securityconstrained unit commitment’, IEEE Trans. Power Syst., 2010, 25, pp. 1937–1945.

29)

29. Duong, T., JianGang, Y., Truong, V.: ‘Application of min cut algorithm for optimal location of FACTS devices considering system loadability and cost of installation’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 979–987.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietgtd.2018.0376
Related content
content/journals/10.1049/ietgtd.2018.0376
pub_keyword,iet_inspecKeyword,pub_concept
6
6