access icon free Contribution of FACTS devices in power systems security using MILP-based OPF

Traditionally, electric system operators have dispatched generation to minimise total production costs ignoring the flexibility of the AC transmission system (ACTS). One available option to enhance power system security is to harness the flexibility of the ACTS, where a variety of flexible AC transmission system (FACTS) devices can be incorporated in the ACTS. However, utilisation of FACTS devices is limited today due to the complexities that these devices introduce to the AC optimal power flow (ACOPF) problem. The mathematical representation of the full ACOPF problem, with the added modelling of FACTS devices, is a non-linear programming (NLP) optimisation problem, which is computationally burdensome for large-scale systems. This study presents a method to convert this NLP problem into a mixed-integer linear program (MILP) where a certain level of solution accuracy can be achieved for a time budget. In this regard, this study first proposes a linear AC OPF model, using which the OPF solution with the operation of FACTS devices is obtained. In addition, the loadability of the power systems is utilised to quantify the impacts of FACTS devices on improving the security of system. The OPF problem including FACTS devices based on a linearised model is tested on a 6-bus and the IEEE 118-bus test systems.

Inspec keywords: integer programming; linear programming; power generation dispatch; nonlinear programming; power system security; flexible AC transmission systems

Other keywords: mixed-integer linear program; FACTS devices; electric system operators; generation dispatch; total production cost minimization; flexible AC transmission system; linear AC OPF model; mathematical representation; IEEE 118-bus test systems; nonlinear programming; NLP optimisation problem; AC optimal power flow problem; MILP-based OPF; power system security

Subjects: a.c. transmission; Power system management, operation and economics; Other power apparatus and electric machines; Optimisation techniques; Power system control

References

    1. 1)
      • 21. Misener, R., Floudas, C.: ‘Piecewise-linear approximations of multidimensional functions’, J. Optim. Theory Appl., 2010, 145, pp. 120147.
    2. 2)
      • 13. Nasri, A., Conejo, A. J., Kazempour, S. J., et al: ‘Minimizing wind power spillage using an OPF with FACTS devices’, IEEE Trans. Power Syst., 2014, 29, pp. 21502159.
    3. 3)
      • 28. Khodaei, A., Shahidehpour, M.: ‘Transmission switching in security-constrained unit commitment’, IEEE Trans. Power Syst., 2010, 25, pp. 19371945.
    4. 4)
      • 2. Bertsekas, D. P.: ‘Nonlinear programming’ (Athena Scientific Belmont, Nashua, NH, USA, 1999).
    5. 5)
      • 11. Zarate-Minano, R., Conejo, A., Milano, F.: ‘OPF-based security redispatching including FACTS devices’, IET Gener. Transm. Distrib., 2008, 2, pp. 821833.
    6. 6)
      • 5. Pillay, A., Karthikeyan, S. P., Kothari, D.: ‘Congestion management in power systems – a review’, Int. J. Electr. Power Energy Syst., 2015, 70, pp. 8390.
    7. 7)
      • 16. Zhang, H., Heydt, G. T., Vittal, V., et al: ‘An improved network model for transmission expansion planning considering reactive power and network losses’, IEEE Trans. Power Syst., 2013, 28, pp. 34713479.
    8. 8)
      • 15. Nagalakshmi, S., Kamaraj, N.: ‘On-line evaluation of loadability limit for pool model with TCSC using back propagation neural network’, Int. J. Electr. Power Energy Syst., 2013, 47, pp. 5260.
    9. 9)
      • 6. Berizzi, A., Delfanti, M., Marannino, P., et al: ‘Enhanced security-constrained OPF with FACTS devices’, IEEE Trans. Power Syst., 2005, 20, pp. 15971605.
    10. 10)
      • 23. Fuerte-Esquivel, C., Acha, E., Ambriz-Perez, H.: ‘A thyristor controlled series compensator model for the power flow solution of practical power networks’, IEEE Trans. Power Syst., 2000, 15, pp. 5864.
    11. 11)
      • 29. Duong, T., JianGang, Y., Truong, V.: ‘Application of min cut algorithm for optimal location of FACTS devices considering system loadability and cost of installation’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 979987.
    12. 12)
      • 1. Lehmkoster, C.: ‘Security constrained optimal power flow for an economical operation of FACTS-devices in liberalized energy markets’, IEEE Trans. Power Deliv., 2002, 17, pp. 603608.
    13. 13)
      • 24. Ambriz-Perez, H., Acha, E., Fuerte-Esquivel, C.: ‘Advanced SVC models for Newton–Raphson load flow and Newton optimal power flow studies’, IEEE Trans. Power Syst., 2000, 15, pp. 129136.
    14. 14)
      • 17. Jordehi, A. R.: ‘Particle swarm optimisation (PSO) for allocation of FACTS devices in electric transmission systems: a review’, Renew. Sust. Energy Rev., 2015, 52, pp. 12601267.
    15. 15)
      • 12. Akbari, T., Bina, M. T.: ‘Linear approximated formulation of AC optimal power flow using binary discretisation’, IET Gener. Transm. Distrib., 2016, 10, pp. 11171123.
    16. 16)
      • 19. Khorsandi, A., Hosseinian, S., Ghazanfari, A.: ‘Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem’, Electr. Power Syst. Res., 2013, 95, pp. 206213.
    17. 17)
      • 7. Gasperic, S., Mihalic, R.: ‘The impact of serial controllable FACTS devices on voltage stability’, Int. J. Electr. Power Energy Syst., 2015, 64, pp. 10401048.
    18. 18)
      • 4. Nireekshana, T., Rao, G. K., Raju, S. S. N.: ‘Enhancement of ATC with FACTS devices using real-code genetic algorithm’, Int. J. Electr. Power Energy Syst., 2012, 43, pp. 12761284.
    19. 19)
      • 20. Sahraei-Ardakani, M., Blumsack, S. A.: ‘Transfer capability improvement through market-based operation of series FACTS devices’, 2015.
    20. 20)
      • 3. Mukherjee, A., Mukherjee, V.: ‘Solution of optimal power flow with FACTS devices using a novel oppositional krill herd algorithm’, Int. J. Electr. Power Energy Syst., 2016, 78, pp. 700714.
    21. 21)
      • 22. Beale, E., Forrest, J. J.: ‘Global optimization using special ordered sets’, Math. Program., 1976, 10, pp. 5269.
    22. 22)
      • 18. Ongsakul, W., Bhasaputra, P.: ‘Optimal power flow with FACTS devices by hybrid TS/SA approach’, Int. J. Electr. Power Energy Syst., 2002, 24, pp. 851857.
    23. 23)
      • 14. Henneaux, P., Kirschen, D. S.: ‘Probabilistic security analysis of optimal transmission switching’, IEEE Trans. Power Syst., 2016, 31, pp. 508517.
    24. 24)
      • 26. CPLEX, GAMS. The Solver Manuals. GAME/CPLEX, 1996 [Online]. Available at http://www.gams.com/.
    25. 25)
      • 27. Drud, A. S.: GAMS/CONOPT. ARKI consulting and development, Bagsvaerd, Denmark, 1996 [Online]. Available at http://www.gams.com/.
    26. 26)
      • 25. Gurobi Optimization, Gurobi Optimizer Reference Manual. [Online]. Available at http://www.gurobi.com.
    27. 27)
      • 8. Ghahremani, E., Kamwa, I.: ‘Optimal placement of multiple-type FACTS devices to maximize power system loadability using a generic graphical user interface’, IEEE Trans. Power Syst., 2013, 28, pp. 764778.
    28. 28)
      • 10. Sahraei-Ardakani, M., Hedman, K. W.: ‘Day-ahead corrective adjustment of FACTS reactance: a linear programming approach’, IEEE Trans. Power Syst., 2016, 31, pp. 28672875.
    29. 29)
      • 9. Sahraei-Ardakani, M., Hedman, K.W.: ‘A fast LP approach for enhanced utilization of variable impedance based FACTS devices’, IEEE Trans. Power Syst., 2016, 31, pp. 22042213.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.0376
Loading

Related content

content/journals/10.1049/iet-gtd.2018.0376
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading