Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Digital coordination strategy of protection and frequency stability for an islanded microgrid

This study presents a digital coordination strategy of load frequency control (LFC) and Over/Under Frequency Relay (OUFR) protection for an isolated microgrid (MG) considering high penetration of renewable energy sources (RESs). In such MGs, the reduction in system inertia due to the replacement of traditional generating units with a large amount of RESs causes undesirable influence to MG frequency stability, leading to weakening of the MG. Furthermore, sudden load change and short circuits caused large frequency fluctuations which threaten the system security. In order to handle these challenges, this study proposes a specific design of the digital OUFR, which will operate for both conditions of over and under frequency in coordination with digital PID controller based on mapping technique in discretization process to protect the MG against high-frequency variations. To prove the effectiveness of the proposed digital coordination strategy, a small MG was investigated for the simulation considering load change, varying the penetration level of RESs and the system inertia. The results reveal the robustness of the proposed coordination to maintain the MG frequency stability and security. In addition, the superiority of the digital OUFR has been approved in terms of accuracy and speed response during high disturbances.

References

    1. 1)
      • 20. Tang, X., Hu, X., Li, N., et al: ‘A novel frequency and voltage control method for islanded microgrid based on multi-energy storages’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 410419.
    2. 2)
      • 7. Keil, T., Jager, J.: ‘Advanced coordination method for over-current protection relay using nonstandard tripping characteristics’, IEEE Trans. Power Deliv., 2008, 23, (1), pp. 5257.
    3. 3)
      • 28. Sortomme, E., Mapes, G., Venkata, S.: ‘Fault analysis and protection of a micro-grid’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 10451053.
    4. 4)
      • 2. Bevrani, H., Watanabe, M., Mitani, Y.: ‘Power system monitoring and control’ (John Wiley & Sons, New Jersey, USA, 2014).
    5. 5)
      • 36. Zarei, S., Parniani, M.: ‘A comprehensive digital protection scheme for low-voltage microgrids with inverter-based and conventional distributed generations’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 441452.
    6. 6)
      • 22. Pahasa, J., Ngamroo, I.: ‘Coordinated control of wind turbine blade pitch angle and PHEVs using MPCs for load frequency control of microgrid’, IEEE Syst. J., 2016, 10, (1), pp. 97105.
    7. 7)
      • 31. Hongesombut, K., Tephiruk, N.: ‘Modeling of the rate of change of under-frequency relay for microgrid protection’. Int. Electrical Engineering Congress (iEECON), Pattaya, Thailand, 2017.
    8. 8)
      • 10. Shabib, G.: ‘Digital design of a power system stabilizer for power system based on plant-input mapping’, Int. J. Electr. Power Energy Syst. (IJEPES), 2013, 49, pp. 4046.
    9. 9)
      • 37. Hewitson, L., Brown, M., Balakrishnan, R.: ‘Practical power system protection’ (Oxford, Newnes, 2005).
    10. 10)
      • 3. Rakhshani, E., Remon, D., Mir, A., et al: ‘Analysis of derivative control based virtual inertia in multi-area high-voltage direct current interconnected power systems’, IET Gener. Transm. Distrib., 2016, 10, (6), pp. 14581469.
    11. 11)
      • 16. Bevrani, H., Habibi, F., Babahajyani, P.: ‘Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 19351944.
    12. 12)
      • 4. Bevrani, H., Ise, T., Miura, Y.: ‘Virtual synchronous generators: a survey and new perspectives’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 244254.
    13. 13)
      • 13. Shabib, G., Esam, H., Magdy, G.: ‘A new approach to the digital implementation of analog controllers for a power system control’, Int. J. Sci. Eng. Res. (IJSER), 2014, 5, (10), pp. 419427.
    14. 14)
      • 25. Shabib, G., EL Dein, A.Z., Magdy, G.: ‘Digital redesign of a PI controller for a power system based on PIM method’. 16th Int. Middle East Power Systems Conf. (MEPCON'14), Ain Shams University, Egypt, December 2014.
    15. 15)
      • 6. Zamani, M., Sidhu, T., Yazdani, A.: ‘A protection strategy and microprocessor-based relay for low-voltage micro-grids’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 18731883.
    16. 16)
      • 14. Singh, A., Sathans, : ‘GA optimized PID controller for frequency regulation in standalone AC microgrid’. IEEE Conf., 7th India Int. Conf. on Power Electronics (IICPE), Patiala, India, November 2016, pp. 1719.
    17. 17)
      • 8. Brahma, S., Girgis, A.: ‘Development of adaptive protection scheme for distribution systems with high penetration of distributed generation’, IEEE Trans. Power Deliv., 2004, 19, (1), pp. 5663.
    18. 18)
      • 29. Sheng, S., Li, K., Chan, W., et al: ‘Adaptive agent-based wide-area current differential protection system’, IEEE Trans. Ind. Appl., 2010, 46, (5), pp. 21112117.
    19. 19)
      • 9. Meier, S., Kunsman, S.: ‘Protection and control system impacts from The digital world’, 69th Annual Conf. for Protective Relay Engineers (CPRE), College Station, TX, USA, April 2016, pp. 1719.
    20. 20)
      • 34. Rabbath, C.A., Lechevin, N.: ‘Discrete-time control system design with applications’ (Springer, New York, Heidelberg, Dordrecht, London, 2014).
    21. 21)
      • 27. Rabbath, C., Hori, N.: ‘Reduced order PIM methods for digital redesign’, IEEE Proc. – Control Theory Appl., 2003, 150, (4), pp. 335346.
    22. 22)
      • 35. Hassan, A., Kandeel, T.: ‘Effectiveness of frequency relays on networks with multiple distributed generation’, J. Electr. Syst. Inf. Technol., 2015, 2, pp. 7585.
    23. 23)
      • 24. Rafee, N., Chen, T., Malik, O.P.: ‘A technique for optimal digital redesign of analog controllers’, IEEE Trans. Control Syst. Technol., 1997, 5, (1), pp. 8999.
    24. 24)
      • 19. Han, Y., Jain, A., Young, P., et al: ‘Robust control of microgrid frequency with attached storage system’. 2nd IEEE Conf. on Decision and Control, Florence, Italy, December 2013, pp. 557565.
    25. 25)
      • 1. Belwin, J., Raja, R.: ‘A review on issues and approaches for microgrid protection’, J. Renew. Sust. Energy Rev., 2017, 67, pp. 988997.
    26. 26)
      • 5. Sortomme, E., Venkata, S., Mitra, J.: ‘Microgrid protection using communication-assisted digital relays’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 27892796.
    27. 27)
      • 11. Magdy, G.: ‘Digital redesign of analog controllers for power systems using PIM’ (LAP LAMBERT-Academic Publishing, 2016), pp. 1164.
    28. 28)
      • 17. Gong, K., Shi, J., Liu, Y.: ‘Application of SMES in the micro-grid based on fuzzy control’, IEEE Trans. Appl. Supercond., 2016, 26, (3), pp. 15.
    29. 29)
      • 33. Vieira, J., Freitas, W., Xu, W., et al: ‘Efficient coordination of ROCOF and frequency relays for distributed generation protection by using the application region’, IEEE Trans. Power Deliv., 2006, 21, (4), pp. 18781884.
    30. 30)
      • 12. Keller, J.P., Anderson, B.D.O.: ‘A new approach to the discretization of continuous time controllers’, IEEE Trans. Automatic Control, 1992, 37, (2), pp. 214223.
    31. 31)
      • 23. Shabib, G., Hori, N.: ‘Discrete-time models of a continuous power system stabilizer’. Annual Conf. on Instrumentation, Control and Information Technology, Kagawa, Japan, 2007, pp. 800805.
    32. 32)
      • 15. Parise, G., Martirano, L., Kermani, M., et al: ‘Designing a power control strategy in a microgrid using PID/fuzzy controller based on battery energy storage’. IEEE Int. Conf. on Environment and Electrical Engineering (EEEIC), Milan, Italy, July 2017.
    33. 33)
      • 18. Kerdphol, T., Saifur, F., Mitani, Y.: ‘Robust virtual inertia control of an islanded microgrid considering high penetration of renewable energy’, IEEE Access, 2017, 6, pp. 625636.
    34. 34)
      • 38. Bevrani, H.: ‘Robust power system frequency control’ (Springer, Gewerbestrasse, Switzerland, 2014, 2nd edn.).
    35. 35)
      • 30. Laghari, J.A., Mokhlis, H., Bakar, A., et al: ‘Application of computational intelligence techniques for load shedding in power systems: a review’, Energy Convers. Manage., 2013, 75, pp. 130140.
    36. 36)
      • 32. Freitas, W., Xu, W., Affonso, M., et al: ‘Comparative analysis between ROCOF and vector surge relays for distributed generation applications’, IEEE Trans., 2005, 20, (2), pp. 13151324.
    37. 37)
      • 21. Sedghi, L., Fakharian, A.: ‘Voltage and frequency control of an islanded microgrid through robust control method and fuzzy droop technique’. 5th Iranian Joint Congress on Fuzzy and Intelligent System (CFIS), Tehran, Iran, March 2017, pp. 110115.
    38. 38)
      • 26. Shabib, G., Abd-Elhameed, H., Magdy, G.: ‘Plant input mapping digital redesign of a PID controller for a power system damping’. 3rd Int. Conf. on Energy Systems and Technologies, Cairo, Egypt, February 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.0264
Loading

Related content

content/journals/10.1049/iet-gtd.2018.0264
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address