access icon free Enhanced proportional power sharing strategy based on adaptive virtual impedance in low-voltage networked microgrid

The variation of the electrical distance and the complexity of the electric network lead to the variations of feeder impedances between distributed generation units and load points. It is determined that conventional droop control has drawbacks in achieving accurate power sharing due to the effects of mismatched impedance. Therefore, this study proposes an enhanced proportional power sharing strategy based on adaptive virtual impedance in a low-voltage networked microgrid. The improved R–L type droop control can effectively prevent the coupling between real and reactive powers. Furthermore, an adaptive virtual impedance loop is introduced to counteract the feeder voltage drop. The method utilises real and reactive power mismatching which were fed into integral controllers, and then generates the virtual inductive and resistive components, respectively. This proposed strategy is able to enhance power sharing accuracy without requiring the knowledge of feeder impedance, and it is more adaptive to the complex impedance. The simulation experiments carried out under the environment of MATLAB/Simulink, and results verify the effectiveness of the proposed strategy.

Inspec keywords: power generation control; distributed power generation; reactive power control

Other keywords: virtual inductive components; enhanced proportional power sharing strategy; improved R–L type droop control; distributed generation units; electric network complexity; Simulink; adaptive virtual impedance loop; virtual resistive components; reactive powers; low-voltage networked microgrid; mismatched impedance; MATLAB; load points; real powers; integral controllers; electrical distance variation; feeder impedances variations

Subjects: Control of electric power systems; Distributed power generation; Power and energy control; Power system control

References

    1. 1)
      • 13. Majumder, R., Chaudhuri, B., Ghosh, A., et al: ‘Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 796808.
    2. 2)
      • 23. Moslemi, R., Mohammadpour, J.: ‘Accurate reactive power control of autonomous microgrids using an adaptive virtual inductance loop’, Electric Power Syst. Res., 2015, 129, pp. 142149.
    3. 3)
      • 20. Dou, C., Zhang, Z., Yue, D., et al: ‘Improved droop control based on virtual impedance and virtual power source in low-voltage microgrid’, IET Gener. Transm. Distrib., 2017, 11, (4), pp. 10461054.
    4. 4)
      • 27. Micallef, A., Apap, M., Spiteri-Staines, C., et al: ‘Reactive power sharing and voltage harmonic distortion compensation of droop controlled single phase islanded microgrids’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 11491158.
    5. 5)
      • 11. Guerrero, J.M., De Vicuna, L.G., Matas, J., et al: ‘Output impedance design of parallel-connected UPS inverters with wireless load-sharing control’, IEEE Trans. Ind. Electron., 2005, 52, (4), pp. 11261135.
    6. 6)
      • 18. Zhong, Q.-C.: ‘Robust droop controller for accurate proportional load sharing among inverters operated in parallel’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12811290.
    7. 7)
      • 3. Liu, W., Gu, W., Xu, Y.L.: ‘General distributed secondary control for multi-microgrids with both PQ-controlled and droop-controlled distributed generators’, IET Gener. Transm. Distrib., 2017, 11, (3), pp. 707718.
    8. 8)
      • 24. Zhang, H., Kim, S., Sun, Q., et al: ‘Distributed adaptive virtual impedance control for accurate reactive power sharing based on consensus control in microgrids’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 17491761.
    9. 9)
      • 1. Blaabjerg, F., Chen, Z., Kjaer, S.B.: ‘Power electronics as efficient interface in dispersed power generation systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 11841194.
    10. 10)
      • 28. Simpson-Porco, J.W., Shafiee, Q., Dorfler, F., et al: ‘Secondary frequency and voltage control of islanded microgrids via distributed averaging’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 70257038.
    11. 11)
      • 21. Mahmood, H., Michaelson, D., Jiang, J.: ‘Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances’, IEEE Trans. Power Electron., 2015, 30, (3), pp. 16051617.
    12. 12)
      • 26. Shafiee, Q., Guerrero, J.M., Vasquez, J.C.: ‘Distributed secondary control for islanded microgrids – a novel approach’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 10181031.
    13. 13)
      • 4. Fu, Q., Montoya, L.F., Solanki, A., et al: ‘Microgrid generation capacity design with renewables and energy storage addressing power quality and surety’, IEEE Trans. Smart Grid., 2012, 3, (4), pp. 20192027.
    14. 14)
      • 17. Li, Y.W., Kao, C.-N.: ‘An accurate power control strategy for power electronics-interfaced distributed generation units operating in a low voltage multibus microgrid’, IEEE Trans. Power Electron., 2009, 24, (12), pp. 29772988.
    15. 15)
      • 19. Zhu, Y., Zhuo, F., Wang, F., et al: ‘A virtual impedance optimization method for reactive power sharing in networked microgrid’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 28902904.
    16. 16)
      • 8. Li, J., Yang, Q., Robinson, F., et al: ‘Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system’, Energy, 2017, 118, (1), pp. 11101122.
    17. 17)
      • 12. Guerrero, J.M., Matas, J., de Vicuna, L.G, et al: ‘Decentralized control for parallel operation of distributed generation inverters using resistive output impedance’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 9941004.
    18. 18)
      • 29. Rocabert, J., Luna, A., Blaabjerg, F., et al: ‘Control of power converters in AC microgrids’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 47344749.
    19. 19)
      • 14. Zhu, Y.X., Zhuo, F., Wang, F., et al: ‘A wireless load sharing strategy for islanded microgrid based on feeder current sensing’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 67066719.
    20. 20)
      • 7. Bidram, A., Davoudi, A.: ‘Hierarchical structure of microgrids control system’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 19631976.
    21. 21)
      • 30. Ketabi, A., Rajamand, S.S., Shahidehpour, M., et al: ‘Power sharing in parallel inverters with different types of loads’, IET Gener. Transm. Distrib., 2017, 11, (10), pp. 24382447.
    22. 22)
      • 2. Wang, C.S., Yang, X., Wu, Z., et al: ‘A highly integrated and reconfigurable microgrid testbed with hybrid distributed energy sources’, IEEE Trans. Smart Grid., 2016, 7, (1), pp. 451459.
    23. 23)
      • 25. Meng, W., Wang, X., Liu, S.: ‘Distributed load sharing of an inverter-based microgrid with reduced communication’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 13541364.
    24. 24)
      • 5. Nassar, M.E., Salama, M.M.M.: ‘A novel branch-based power flow algorithm for islanded AC microgrids’, Electr. Power Syst. Res., 2017, 146, pp. 5162.
    25. 25)
      • 22. He, J., Li, Y.W., Blaabjerg, F.: ‘An enhanced islanding microgrid reactive power, imbalance power, and harmonic power sharing scheme’, IEEE Trans. Power Electron., 2015, 30, (6), pp. 33893401.
    26. 26)
      • 6. Dou, C., Lv, M., Zhao, T., et al: ‘Decentralised coordinated control of microgrid based on multi-agent system’, IET Gener. Transm. Distrib., 2015, 9, (16), pp. 24742484.
    27. 27)
      • 15. He, J., Li, Y.W.: ‘Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation’, IEEE Trans. Ind. Appl., 2011, 47, (6), pp. 25252538.
    28. 28)
      • 16. He, J., Li, Y.W., Guerrero, J.M., et al: ‘An islanding microgrid power sharing approach using enhanced virtual impedance control scheme’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 52725282.
    29. 29)
      • 9. Khorsandi, A., Ashourloo, M., Mokhtari, H., et al: ‘Automatic droop control for a low voltage DC microgrid’, IET Gener. Transm. Distrib., 2016, 10, (1), pp. 4147.
    30. 30)
      • 10. Han, Y., Li, H., Shen, P., et al: ‘Review of active and reactive power sharing strategies in hierarchical controlled microgrids’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 24272451.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.0051
Loading

Related content

content/journals/10.1049/iet-gtd.2018.0051
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading