Enhanced proportional power sharing strategy based on adaptive virtual impedance in low-voltage networked microgrid

Enhanced proportional power sharing strategy based on adaptive virtual impedance in low-voltage networked microgrid

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The variation of the electrical distance and the complexity of the electric network lead to the variations of feeder impedances between distributed generation units and load points. It is determined that conventional droop control has drawbacks in achieving accurate power sharing due to the effects of mismatched impedance. Therefore, this study proposes an enhanced proportional power sharing strategy based on adaptive virtual impedance in a low-voltage networked microgrid. The improved R–L type droop control can effectively prevent the coupling between real and reactive powers. Furthermore, an adaptive virtual impedance loop is introduced to counteract the feeder voltage drop. The method utilises real and reactive power mismatching which were fed into integral controllers, and then generates the virtual inductive and resistive components, respectively. This proposed strategy is able to enhance power sharing accuracy without requiring the knowledge of feeder impedance, and it is more adaptive to the complex impedance. The simulation experiments carried out under the environment of MATLAB/Simulink, and results verify the effectiveness of the proposed strategy.


    1. 1)
      • 1. Blaabjerg, F., Chen, Z., Kjaer, S.B.: ‘Power electronics as efficient interface in dispersed power generation systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 11841194.
    2. 2)
      • 2. Wang, C.S., Yang, X., Wu, Z., et al: ‘A highly integrated and reconfigurable microgrid testbed with hybrid distributed energy sources’, IEEE Trans. Smart Grid., 2016, 7, (1), pp. 451459.
    3. 3)
      • 3. Liu, W., Gu, W., Xu, Y.L.: ‘General distributed secondary control for multi-microgrids with both PQ-controlled and droop-controlled distributed generators’, IET Gener. Transm. Distrib., 2017, 11, (3), pp. 707718.
    4. 4)
      • 4. Fu, Q., Montoya, L.F., Solanki, A., et al: ‘Microgrid generation capacity design with renewables and energy storage addressing power quality and surety’, IEEE Trans. Smart Grid., 2012, 3, (4), pp. 20192027.
    5. 5)
      • 5. Nassar, M.E., Salama, M.M.M.: ‘A novel branch-based power flow algorithm for islanded AC microgrids’, Electr. Power Syst. Res., 2017, 146, pp. 5162.
    6. 6)
      • 6. Dou, C., Lv, M., Zhao, T., et al: ‘Decentralised coordinated control of microgrid based on multi-agent system’, IET Gener. Transm. Distrib., 2015, 9, (16), pp. 24742484.
    7. 7)
      • 7. Bidram, A., Davoudi, A.: ‘Hierarchical structure of microgrids control system’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 19631976.
    8. 8)
      • 8. Li, J., Yang, Q., Robinson, F., et al: ‘Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system’, Energy, 2017, 118, (1), pp. 11101122.
    9. 9)
      • 9. Khorsandi, A., Ashourloo, M., Mokhtari, H., et al: ‘Automatic droop control for a low voltage DC microgrid’, IET Gener. Transm. Distrib., 2016, 10, (1), pp. 4147.
    10. 10)
      • 10. Han, Y., Li, H., Shen, P., et al: ‘Review of active and reactive power sharing strategies in hierarchical controlled microgrids’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 24272451.
    11. 11)
      • 11. Guerrero, J.M., De Vicuna, L.G., Matas, J., et al: ‘Output impedance design of parallel-connected UPS inverters with wireless load-sharing control’, IEEE Trans. Ind. Electron., 2005, 52, (4), pp. 11261135.
    12. 12)
      • 12. Guerrero, J.M., Matas, J., de Vicuna, L.G, et al: ‘Decentralized control for parallel operation of distributed generation inverters using resistive output impedance’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 9941004.
    13. 13)
      • 13. Majumder, R., Chaudhuri, B., Ghosh, A., et al: ‘Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 796808.
    14. 14)
      • 14. Zhu, Y.X., Zhuo, F., Wang, F., et al: ‘A wireless load sharing strategy for islanded microgrid based on feeder current sensing’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 67066719.
    15. 15)
      • 15. He, J., Li, Y.W.: ‘Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation’, IEEE Trans. Ind. Appl., 2011, 47, (6), pp. 25252538.
    16. 16)
      • 16. He, J., Li, Y.W., Guerrero, J.M., et al: ‘An islanding microgrid power sharing approach using enhanced virtual impedance control scheme’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 52725282.
    17. 17)
      • 17. Li, Y.W., Kao, C.-N.: ‘An accurate power control strategy for power electronics-interfaced distributed generation units operating in a low voltage multibus microgrid’, IEEE Trans. Power Electron., 2009, 24, (12), pp. 29772988.
    18. 18)
      • 18. Zhong, Q.-C.: ‘Robust droop controller for accurate proportional load sharing among inverters operated in parallel’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12811290.
    19. 19)
      • 19. Zhu, Y., Zhuo, F., Wang, F., et al: ‘A virtual impedance optimization method for reactive power sharing in networked microgrid’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 28902904.
    20. 20)
      • 20. Dou, C., Zhang, Z., Yue, D., et al: ‘Improved droop control based on virtual impedance and virtual power source in low-voltage microgrid’, IET Gener. Transm. Distrib., 2017, 11, (4), pp. 10461054.
    21. 21)
      • 21. Mahmood, H., Michaelson, D., Jiang, J.: ‘Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances’, IEEE Trans. Power Electron., 2015, 30, (3), pp. 16051617.
    22. 22)
      • 22. He, J., Li, Y.W., Blaabjerg, F.: ‘An enhanced islanding microgrid reactive power, imbalance power, and harmonic power sharing scheme’, IEEE Trans. Power Electron., 2015, 30, (6), pp. 33893401.
    23. 23)
      • 23. Moslemi, R., Mohammadpour, J.: ‘Accurate reactive power control of autonomous microgrids using an adaptive virtual inductance loop’, Electric Power Syst. Res., 2015, 129, pp. 142149.
    24. 24)
      • 24. Zhang, H., Kim, S., Sun, Q., et al: ‘Distributed adaptive virtual impedance control for accurate reactive power sharing based on consensus control in microgrids’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 17491761.
    25. 25)
      • 25. Meng, W., Wang, X., Liu, S.: ‘Distributed load sharing of an inverter-based microgrid with reduced communication’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 13541364.
    26. 26)
      • 26. Shafiee, Q., Guerrero, J.M., Vasquez, J.C.: ‘Distributed secondary control for islanded microgrids – a novel approach’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 10181031.
    27. 27)
      • 27. Micallef, A., Apap, M., Spiteri-Staines, C., et al: ‘Reactive power sharing and voltage harmonic distortion compensation of droop controlled single phase islanded microgrids’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 11491158.
    28. 28)
      • 28. Simpson-Porco, J.W., Shafiee, Q., Dorfler, F., et al: ‘Secondary frequency and voltage control of islanded microgrids via distributed averaging’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 70257038.
    29. 29)
      • 29. Rocabert, J., Luna, A., Blaabjerg, F., et al: ‘Control of power converters in AC microgrids’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 47344749.
    30. 30)
      • 30. Ketabi, A., Rajamand, S.S., Shahidehpour, M., et al: ‘Power sharing in parallel inverters with different types of loads’, IET Gener. Transm. Distrib., 2017, 11, (10), pp. 24382447.

Related content

This is a required field
Please enter a valid email address