Optimal operation management of a regional network of microgrids based on chance-constrained model predictive control

Optimal operation management of a regional network of microgrids based on chance-constrained model predictive control

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A regional network of microgrids includes a cluster of microgrids located in a neighbourhood area connecting together through power lines. In this study, the problem of operation management of networked-microgrids is considered. The main goal is to develop an efficient strategy to control local operation of each microgrid including the amount of energy to be requested from the main grid and the optimal charging/discharging patterns of batteries along with the transferred power among microgrids considering system's technical constraints. Accounting for system uncertainty due to the presence of renewable energy sources and variability of loads, the problem is formulated in the framework of chance-constrained model predictive control. Moreover, the Monte Carlo algorithm is adopted to generate discrete random scenarios to evaluate the solutions. Simulation studies have been exemplarily carried out in order to show the effectiveness of the proposed approach.


    1. 1)
      • 1. Vahedipour-Dahraie, M., Anvari-Moghaddam, A., Guerrero, J.M.: ‘Evaluation of reliability in risk-constrained scheduling of autonomous microgrids with demand response and renewable resources’, IET Renew. Power Gener., 2018, 12, (6), pp. 657667.
    2. 2)
      • 2. Anvari-Moghaddam, A., Guerrero, J.M., Vasquez, J.C., et al: ‘Efficient energy management for a grid-tied residential microgrid’, IET Gener. Transm. Distrib., 2017, 11, (11), pp. 27522761.
    3. 3)
      • 3. Rahbar, K.: ‘Energy management and cooperation in microgrids’. PhD thesis, National university of Singapore, 2015.
    4. 4)
      • 4. Minciardi, R., Sacile, R.: ‘Optimal control in a cooperative network of smart power grids’, IEEE Syst. J., 2012, 6, (1), pp. 126133.
    5. 5)
      • 5. Ouammi, A., Dagdougui, H., Sacile, R.: ‘Optimal control of power flows and energy local storages in a network of microgrids modelled as a system of systems’, IEEE Trans. Control Syst. Technol., 2015, 23, (1), pp. 128138.
    6. 6)
      • 6. Luna, A. C., Diaz, N. L., Graells, M. J., et al: ‘Cooperative energy management for a cluster of households prosumers’, IEEE Trans. Consum. Electron., 2016, 62, (3), pp. 235242.
    7. 7)
      • 7. Alejandro, J., Arce, A., Bordons, C.: ‘An integrated framework for distributed model predictive control of large-scale power networks’, IEEE Trans. Ind. Inf., 2014, 10, (1), pp. 197209.
    8. 8)
      • 8. Mokhtari, G., Nourbakhsh, G., Anvari-Moghadam, A., et al: ‘Optimal cooperative management of energy storage systems to deal with over- and under-voltages’, Energies, 2017, 10, (3), pp. 117.
    9. 9)
      • 9. Alejandro, J., Arce, A., Bordons, C.: ‘Combined environmental and economic dispatch of smart grids using distributed model predictive control’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 6576.
    10. 10)
      • 10. Wang, Z., Chen, B., Wang, J., et al: ‘Coordinated energy management of networked microgrids in distribution systems’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 4553.
    11. 11)
      • 11. Anvari-Moghaddam, A., Rahimi-Kian, A., Mirian, M.S., et al: ‘A multi-agent based energy management solution for integrated buildings and microgrid system’, Appl. Energy, 2017, 203, pp. 4156.
    12. 12)
      • 12. Dagdougui, H., Sacile, R.: ‘Decentralized control of the power flows in a network of smart microgrids modelled as a team of cooperative agents’, IEEE Trans. Control Syst. Technol., 2014, 22, (2), pp. 510519.
    13. 13)
      • 13. Wei, C., Fadlullah, Z. M., Kato, N., et al: ‘GT-CFS: a game theoretic coalition formulation strategy for reducing power loss in micro grids’, IEEE Trans. Parallel Distrib. Syst., 2014, 25, (9), pp. 23072317.
    14. 14)
      • 14. Parisio, A., Wiezorek, C., Kyntäjä, T., et al: ‘Cooperative MPC-based energy management for networked microgrids’, IEEE Trans. Smart Grid, 2017, 8, (6), pp. 30663074.
    15. 15)
      • 15. Mao, M., Wang, Y., Chang, L., et al: ‘Operation optimization for multi-microgrids based on centralized-decentralized hybrid hierarchical energy management’. 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, October 2017, pp. 48134820.
    16. 16)
      • 16. Farzin, H., Moeini-Aghtaie, M., Fotuhi-Firuzabad, M.: ‘A hierarchical scheme for outage management in multi-microgrids’, Int. Trans. Electr. Energy Syst., 2016, 26, (9), pp. 20232037.
    17. 17)
      • 17. Bui, V. H., Hussain, A., Kim, H. M.: ‘A multiagent-based hierarchical energy management strategy for multi-microgrids considering adjustable power and demand response’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 13231333.
    18. 18)
      • 18. Rodriguez-Diaz, E., Anvari-Moghaddam, A., Vasquez, J.C., et al: ‘Multi-level energy management and optimal control of a residential DC microgrid’. 2017 IEEE Int. Conf. on Consumer Electronics (ICCE), Las Vegas, NV, 2017, pp. 312313.
    19. 19)
      • 19. Su, W., Wang, J., Roh, J.: ‘Stochastic energy scheduling in microgrids with intermittent renewable energy resources’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 18761883.
    20. 20)
      • 20. Parisio, A., Rikos, E., Glielmo, L.: ‘Stochastic model predictive control for economic/environmental operation management of microgrids: an experimental case study’, J. Process Control, 2016, 43, pp. 2437.
    21. 21)
      • 21. Olivares, D.E., Lara, J.D., Cañizares, C.A., et al: ‘Stochastic-predictive energy management system for isolated microgrids’, IEEE Trans. Smart Grid, 2015, 6, (6), pp. 26812693.
    22. 22)
      • 22. Hooshmand, A., Poursaeidi, M. H., Mohammadpour, J., et al: ‘Stochastic model predictive control method for microgrid management’. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, January 2012, pp. 17.
    23. 23)
      • 23. Hussain, A., Bui, V.H., Kim, H.M.: ‘Robust optimization-based scheduling of multi-microgrids considering uncertainties’, Energies, 2016, 9, (4), p. 278.
    24. 24)
      • 24. Zheng, L., Cai, L.: ‘A distributed demand response control strategy using Lyapunov optimization’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 20752083.
    25. 25)
      • 25. Fan, W., Liu, N., Zhang, J.: ‘An event-triggered online energy management algorithm of smart home: Lyapunov optimization approach’, Energies, 2016, 9, (5), p. 381.
    26. 26)
      • 26. Camacho, E. F., Alba, C. B.: ‘Model predictive control’ (Springer Verlag, London, UK, 2013).
    27. 27)
      • 27. Arellano-Garcia, H.: ‘Chance constrained optimization of process systems under uncertainty’. PhD thesis, Berlin University of Technology, 2006.
    28. 28)
      • 28. Richards, A. G.: ‘Robust constrained model predictive control’. PhD thesis, Massachusetts Institute of Technology, 2005.
    29. 29)
      • 29. Kerrigan, E. C., Maciejowski, J. M.: ‘Feedback min–max model predictive control using a single linear program: robust stability and the explicit solution’, Int. J. Robust Nonlinear Control, 2004, 14, (4), pp. 395413.
    30. 30)
      • 30. Mayne, D. Q., Raković, S., Findeisen, R., et al: ‘Robust output feedback model predictive control of constrained linear systems’, Automatica, 2006, 42, (7), pp. 12171222.
    31. 31)
      • 31. Betti, G., Farina, M., Scattolini, R.: ‘Distributed MPC: a noncooperative approach based on robustness concepts’, in Maestre, J.M., Negenborn, R.R. (Eds.): ‘Distributed model predictive control made easy’ (Springer, Dordrecht, The Netherlands, 2014), pp. 421435.
    32. 32)
      • 32. Farina, M., Giulioni, L., Magni, L., et al: ‘An approach to output-feedback MPC of stochastic linear discrete-time systems’, Automatica, 2015, 55, pp. 140149.
    33. 33)
      • 33. Farina, M., Giulioni, L., Scattolini, R.: ‘Distributed predictive control of stochastic linear systems with chance constraints’. American Control Conf., Boston, MA, USA, July 2016, pp. 2025.
    34. 34)
      • 34. Schwarm, A. T., Nikolaou, M.: ‘Chance constrained model predictive control’, AIChE J., 1999, 45, (8), pp. 17431752.
    35. 35)
      • 35. Henrion, R.: ‘Introduction to chance-constrained programming’, Tutorial paper for the Stochastic Programming Community home page, 2004.
    36. 36)
      • 36. Wang, L.: ‘Model predictive control system design and implementation using MATLAB’ (Springer Verlag, London, UK, 2009).
    37. 37)
      • 37. Negenborn, R. R.: ‘Multi-agent model predictive control with applications to power networks’. PhD thesis, Delft University of Technology, 2007.

Related content

This is a required field
Please enter a valid email address