Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free MPPT algorithm for thermoelectric generators based on parabolic extrapolation

In this study, a maximum power point tracking (MPPT) technique based on parabolic extrapolation has been presented for thermoelectric generator systems. Conventional MPPT methods require a closed-loop controller and perturb and observe (P&O) method to provide fast-tracking response. However, they produce power loss due to small oscillations in the steady state. The proposed method excludes the use of closed-loop controller and steady-state oscillations by directly estimating the coordinates of MPP using three random operating points on the parabolic P–I curve. To substantiate the effectiveness of the parabolic extrapolation-based MPPT algorithm, different conditions of temperature gradient and load have been applied. The results demonstrate that the proposed algorithm takes <15% of the time taken by P&O method to track the MPP.

References

    1. 1)
      • 17. Bond, M., Park, J.D.: ‘Current-sensorless power estimation and MPPT implementation for thermoelectric generators’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 55395548.
    2. 2)
      • 27. Killi, M., Samanta, S.: ‘Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 55495559.
    3. 3)
      • 23. Lineykin, S., Ben-Yaakov, S.: ‘Modeling and analysis of thermoelectric modules’, IEEE Trans. Ind. Appl., 2007, 43, (2), pp. 505512.
    4. 4)
      • 25. ‘Datasheet of Thermoelectric Generator Module’. https://customthermoelectric.com/media/wysiwyg/TEG_spec_sheets/2411G-7L31-15CX1_20140508_spec_sht.pdf, accessed January 2017.
    5. 5)
      • 1. Yang, J.: ‘Potential applications of thermoelectric waste heat recovery in the automotive industry’. Proc. IEEE ICT, USA, 2005, pp. 170174.
    6. 6)
      • 10. Bunthern, K., Long, B., Christophe, G., et al: ‘Modeling and tuning of MPPT controllers for a thermoelectric generator’. Proc. IEEE ICGE, Sfax Tunisia, 2014, pp. 220226.
    7. 7)
      • 14. Laird, I., Lu, D.C.: ‘High step-up DC/DC topology and MPPT algorithm for use with a thermoelectric generator’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 31473157.
    8. 8)
      • 15. Montecucco, A., Siviter, J., Knox, A.R.: ‘Simple, fast and accurate maximum power point tracking converter for thermoelectric generators’. Proc. IEEE ICCE, Raleigh, NC, USA, 2012, pp. 27772783.
    9. 9)
      • 26. Femia, N., Petrone, G., Spagnuolo, G., et al: ‘Optimization of perturb and observe maximum power point tracking method’, IEEE Trans. Power Electron., 2005, 20, (4), pp. 963973.
    10. 10)
      • 7. Montecucco, A., Siviter, J., Knox, A.R.: ‘The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel’, Appl. Energy, 2014, 123, (15), pp. 4754.
    11. 11)
      • 24. Chen, M., Rosendahl, L.A., Condra, T.J., et al: ‘Numerical modeling of thermoelectric generators with varying material properties in a circuit simulator’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 112124.
    12. 12)
      • 16. Montecucco, A., Knox, A.R.: ‘Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 828839.
    13. 13)
      • 19. Kollimalla, S.K., Mishra, M.K.: ‘A novel adaptive P&O MPPT algorithm considering sudden changes in the irradiance’, IEEE Trans. Energy Convers., 2014, 29, (3), pp. 602610.
    14. 14)
      • 2. Min, G., Rowe, D.M.: ‘Conversion efficiency of thermoelectric combustion systems’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 528534.
    15. 15)
      • 18. Laird, I., Lovatt, H., Savvides, N., et al: ‘Comparative study of maximum power point tracking algorithms for thermoelectric generators’. Proc. IEEE AUPEC, Sydney, NSW, Australia, 2008, pp. 18.
    16. 16)
      • 4. Gao, L., Liu, S., Fifield, J.M.: ‘Thermoelectric power generation from power feeder’. United States Patent Application 0025644, 2013.
    17. 17)
      • 12. Carreon-Bautista, S., Eladawy, A., Mohieldin, A.N., et al: ‘Boost converter with dynamic input impedance matching for energy harvesting with multi-array thermoelectric generators’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 53455353.
    18. 18)
      • 5. Mobarrez, M, Fregosi, D., Jalali, G., et al: ‘A novel control method for preventing the PV and load fluctuations in a DC microgrid from transferring to the AC power grid’. Proc. IEEE, 2017, pp. 352359.
    19. 19)
      • 20. Pandey, A., Dasgupta, N., Mukherjee, A.K.: ‘High-performance algorithms for drift avoidance and fast tracking in solar MPPT system’, IEEE Trans. Energy Convers., 2008, 23, (2), pp. 681689.
    20. 20)
      • 8. Kim, R.Y., Lai, J.S.: ‘Seamless mode transfer maximum power point tracking controller for thermoelectric generator applications’, IEEE Trans. Power Electron., 2008, 23, (5), pp. 23102318.
    21. 21)
      • 22. Liu, Y.H., Chiu, Y.H., Huang, J.W., et al: ‘A novel maximum power point tracker for thermoelectric generation system’, Renew. Energy, 2016, 97, pp. 306318.
    22. 22)
      • 11. Kim, R.Y., Lai, J.S., York, B., et al: ‘Analysis and design of maximum power point tracking scheme for thermoelectric battery energy storage system’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 37093716.
    23. 23)
      • 13. Kim, J., Kim, C.: ‘DC–DC boost converter with variation-tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 38273833.
    24. 24)
      • 3. Kyono, T., Suzuki, R.O., Ono, K.: ‘Conversion of unused heat energy to electricity by means of thermoelectric generation in condenser’, IEEE Trans. Energy Convers., 2003, 18, (2), pp. 330334.
    25. 25)
      • 9. Pilawa-Podgurski, R.C.N., Pallo, N.A., Chan, W.R., et al: ‘Low-power maximum power point tracker with digital control for thermophotovoltaic generators’. Proc. IEEE APEC, Palm Springs, CA, USA, 2010, pp. 961967.
    26. 26)
      • 6. Adly, M., Strunz, K.: ‘Irradiance-adaptive PV module integrated converter for high efficiency and power quality in standalone and DC microgrid applications’, IEEE Trans. Ind. Electron., 2018, 65, (1), pp. 436446.
    27. 27)
      • 21. Dalala, Z.M., Zahid, Z.U.: ‘New MPPT algorithm based on indirect open circuit voltage and short circuit current detection for thermoelectric generators’. Proc. IEEE ECCE, Canada, 2015, pp. 10621067.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.2007
Loading

Related content

content/journals/10.1049/iet-gtd.2017.2007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address