SG parameters estimation based on synchrophasor data

SG parameters estimation based on synchrophasor data

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, first, it is shown that the least-squares (LS) algorithm outperforms well known methods such as extended Kalman filter and unscented Kalman filter for synchronous generator (SG) parameters estimation using phasor measurement unit (PMU) data. However, as the LS algorithm may estimate the SG parameters inaccurately if the initial values of SG model state variables are not valid, a modified LS (MLS) algorithm, which estimates the initial values of SG model state variables alongside SG parameters, is proposed. In addition to parameters estimation of an SG classical model, the performance of this algorithm in the estimation of whole electromagnetic parameters and rotor inertia constant of an SG full-order model is evaluated. Note that conventionally, measurements of generators rotor angles were used to estimate SGs full-order model parameters; nevertheless, in the proposed MLS algorithm, online SG parameters estimation is accomplished using PMU data without relying on rotor angle measurement that is difficult to be obtained in practise. Simulation results demonstrate the effectiveness of the proposed algorithm in SG parameters estimation for various disturbances and noisy measurements. Furthermore, the effect of mechanical torque signal unavailability on the proposed algorithm capability is studied, where the efficacy of this algorithm is proven.


    1. 1)
      • 1. Valverde, G., Kyriakides, E., Heydt, G.T., et al: ‘Nonlinear estimation of synchronous machine parameters using operating data’, IEEE Trans. Energy Convers., 2011, 26, (3), pp. 639645.
    2. 2)
      • 2. Vandoorn, T.L., De Belie, F.M., Vyncke, T.J., et al: ‘Generation of multisinusoidal test signals for the identification of synchronous-machine parameters by using a voltage-source inverter’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 430439.
    3. 3)
      • 3. Mouni, E., Tnani, S., Champenois, G.: ‘Synchronous generator modeling and parameter estimation using least square method’, Simul. Model. Pract. Theory, 2008, 16, (6), pp. 678689.
    4. 4)
      • 4. Hasni, M., Touhami, O., Ibtiouen, R., et al: ‘Estimation of synchronous machine parameters by standstill tests’, Math. Comput. Simul., 2010, 81, (2), pp. 277289.
    5. 5)
      • 5. Zaker, B., Gharehpetian, G.B., Karrari, M., et al: ‘Simultaneous parameter identification of synchronous generator and excitation system using online measurements’, IEEE Trans. Smart Grid, 2016, 7, (3), pp. 12301238.
    6. 6)
      • 6. Huang, Z., Du, P., Kosterev, D., et al: ‘Generator dynamic model validation and parameter calibration using phasor measurements at the point of connection’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 19391949.
    7. 7)
      • 7. Zhao, Z., Zheng, F., Gao, J., et al: ‘A dynamic on-line parameter identification and full-scale system experimental verification for large synchronous machines’, IEEE Trans. Energy Convers., 1995, 10, (3), pp. 392398.
    8. 8)
      • 8. Heydt, G.T., Vittal, V., Kyriakides, E., et al: ‘Estimation of synchronous generator parameters from on-line measurements’ (PSERC, 2005), pp. 1132.
    9. 9)
      • 9. Aghamolki, H.G., Miao, Z., Fan, L., et al: ‘Identification of synchronous generator model with frequency control using unscented Kalman filter’, Electr. Power Syst. Res., 2015, 126, pp. 4555.
    10. 10)
      • 10. Hutchison, G., Zahawi, B., Harmer, K., et al: ‘Non-invasive identification of turbogenerator parameters from actual transient network data’, IET Gener. Transm. Distrib., 2015, 9, (11), pp. 11291136.
    11. 11)
      • 11. Karrari, M., Malik, O.P.: ‘Identification of physical parameters of a synchronous generator from online measurements’, IEEE Trans. Energy Convers., 2004, 19, (2), pp. 407415.
    12. 12)
      • 12. Huang, J., Corzine, K.A., Belkhayat, M.: ‘Online synchronous machine parameter extraction from small-signal injection techniques’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 4351.
    13. 13)
      • 13. Tsai, C.C.: ‘PMU-based parameter identification for the synchronous generator dynamic model’. PhD thesis, University of Texas at Arlington, 2011.
    14. 14)
      • 14. Fan, L., Wehbe, Y.: ‘Extended Kalman filtering based real-time dynamic state and parameter estimation using PMU data’, Electr. Power Syst. Res., 2013, 103, pp. 168177.
    15. 15)
      • 15. Fairbairn, R.E., Harley, R.G.: ‘On-line measurement of synchronous machine parameters’, IEEE Trans. Ind. Appl., 1992, 28, (3), pp. 639645.
    16. 16)
      • 16. Huang, Z., Du, P., Kosterev, D., et al: ‘Application of extended Kalman filter techniques for dynamic model parameter calibration’. Proc. IEEE Power and Energy Society General Meeting, Calgary, Canada, July 2009, pp. 18.
    17. 17)
      • 17. Huang, M., Li, W., Yan, W.: ‘Estimating parameters of synchronous generators using square-root unscented Kalman filter’, Electr. Power Syst. Res., 2010, 80, (9), pp. 11371144.
    18. 18)
      • 18. Lee, C.C., Tan, O.T.: ‘A weighted-least-squares parameter estimator for synchronous machines’, IEEE Trans. Power Appar. Syst., 1977, 96, (1), pp. 97101.
    19. 19)
      • 19. Keyhani, A., Miri, S.M.: ‘Observers for tracking of synchronous machine parameters and detection of incipient faults’, IEEE Trans. Energy Convers., 1986, 1, (2), pp. 184192.
    20. 20)
      • 20. Kyriakides, E., Heydt, G.T., Vittal, V.: ‘Online parameter estimation of round rotor synchronous generators including magnetic saturation’, IEEE Trans. Energy Convers., 2005, 20, (3), pp. 529537.
    21. 21)
      • 21. Wehbe, Y., Fan, L., Miao, Z.: ‘Least squares based estimation of synchronous generator states and parameters with phasor measurement units’. Proc. North American Power Symp. (NAPS), Champaign, USA, September 2012, pp. 16.
    22. 22)
      • 22. Shiroei, M., Mohammadi-Ivatloo, B., Parniani, M.: ‘Low-order dynamic equivalent estimation of power systems using data of phasor measurement units’, Int. J. Electr. Power Energy Syst., 2016, 74, pp. 134141.
    23. 23)
      • 23. Gómez, J.E., Decker, I.C.: ‘A novel model validation methodology using synchrophasor measurements’, Electr. Power Syst. Res., 2015, 119, pp. 207217.
    24. 24)
      • 24. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    25. 25)
      • 25. ‘Performance of three PSS for interarea oscillations’. Available at
    26. 26)
      • 26. C37.118.1: ‘IEEE standard for synchrophasor measurements for power systems’, 2011.
    27. 27)
      • 27. Krause, P.C., Wasynczuk, O., Sudhoff, S.D.: ‘Analysis of electric machinery and drive systems’ (IEEE Press, 2002, 2nd edn.).
    28. 28)
      • 28. Zhou, N., Meng, D., Huang, Z., et al: ‘Dynamic state estimation of a synchronous machine using PMU data: a comparative study’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 450460.
    29. 29)
      • 29. LogicLab s.r.l.: ‘User guide FR947 digital fault and event recorder with PMU’, 2013, 029_01_MUM_F, pp. 1284.
    30. 30)
      • 30. Tripathy, P., Srivastava, S.C., Singh, S.N.: ‘A divide-by-difference-filter based algorithm for estimation of generator rotor angle utilizing synchrophasor measurements’, IEEE Trans. Instrum. Meas., 2010, 59, (6), pp. 15621570.

Related content

This is a required field
Please enter a valid email address