http://iet.metastore.ingenta.com
1887

access icon free Optimal location of PEVCSs using MAS and ER approach

  • HTML
    287.287109375Kb
  • XML
    243.958984375Kb
  • PDF
    3.030735969543457MB
Loading full text...

Full text loading...

/deliver/fulltext/iet-gtd/12/20/IET-GTD.2017.1907.html;jsessionid=3djl053u5s7ns.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-gtd.2017.1907&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Iversen, E.B., Morales, J.M., Madsen, H.: ‘Optimal charging of an electric vehicle using a Markov decision process’, Appl. Energy, 2014, 123, pp. 112.
    2. 2)
      • 2. Lam, A.Y.S., Leung, Y.W., Chu, X.: ‘Electric vehicle charging station placement: formulation, complexity, and solutions’, IEEE Trans. Smart Grid, 2017, 5, pp. 28462856.
    3. 3)
      • 3. Xu, X.H., Yao, L., Zeng, P., et al: ‘Architecture and performance analysis of a smart battery charging and swapping operation service network for electric vehicles in China’, J. Mod. Power Syst. Clean Energy, 2015, 3, pp. 259268.
    4. 4)
      • 4. Tian, Z., Jung, T., Wang, Y., et al: ‘Real-time charging station recommendation system for electric-vehicle taxis’, IEEE Trans. Intell. Transp. Syst., 2016, 17, pp. 30983109.
    5. 5)
      • 5. Yang, Z., Sun, L., Chen, J., et al: ‘Profit maximization for plug-in electric taxi with uncertain future electricity prices’, IEEE Trans. Power Syst., 2014, 29, pp. 30583068.
    6. 6)
      • 6. Du, J., Ouyang, M., Chen, J.: ‘Prospects for Chinese electric vehicle technologies in 2016–2020: ambition and rationality’, Energy, 2016, 120, pp. 584596.
    7. 7)
      • 7. Navigant Research Group: ‘More than 1.8 million plug-in electric vehicles will be sold in the largest 102 U.S. Cities from 2012 to 2020 Navigant Research’. 2013. URL Available at https://www.navigantresearch.com/newsroom/more-than-1-8-million-plug-in-electric-vehicles-will-be-sold-in-the-largest-102-u-s-cities-from-2012-to-2020, accessed January 2013.
    8. 8)
      • 8. Qian, K.J., Zhou, C.K., Allan, M., et al: ‘Modeling of load demand due to EV battery charging in distribution systems’, IEEE Trans. Power Syst., 2011, 26, pp. 802810.
    9. 9)
      • 9. Yu, L., Zhao, T.Y., Chen, Q.F., et al: ‘Centralized bi-level spatial–temporal coordination charging strategy for area electric vehicles’, CSEE J. Power Energy Syst., 2015, 1, pp. 7483.
    10. 10)
      • 10. Shun, T., Liao, K.Y., Xiao, X.M., et al: ‘Charging demand for electric vehicle based on stochastic analysis of trip chain’, IET Gener. Transm. Distrib., 2016, 10, pp. 26892698.
    11. 11)
      • 11. Mu, Y.F., Wu, J.Z., Jenkins, N., et al: ‘A spatial–temporal model for grid impact analysis of plug-in electric vehicles’, Appl. Energy, 2014, 114, pp. 456465.
    12. 12)
      • 12. Li, G., Zhang, X.P.: ‘Modeling of plug-in hybrid electric vehicle charging demand in probabilistic power flow calculations’, IEEE Trans. Smart Grid, 2012, 3, pp. 492499.
    13. 13)
      • 13. Bae, S., Kwasinski, A.: ‘Spatial and temporal model of electric vehicle charging demand’, IEEE Trans. Smart Grid, 2012, 3, pp. 394403.
    14. 14)
      • 14. Papadopoulos, P., Jenkins, N., Cipcigan, L.M., et al: ‘Coordination of the charging of electric vehicles using a multi-agent system’, IEEE Trans. Smart Grid, 2013, 4, pp. 18021809.
    15. 15)
      • 15. Xin, H., Yan, Z., Xu, S.L.: ‘Multi-agent system based coordinated charging strategy for electric vehicles’, Power Syst. Technol., 2015, 39, pp. 4854.
    16. 16)
      • 16. Cui, X.H., Liu, C., Kim, H.K., et al: ‘A multi agent-based framework for simulating household PHEV distribution and electric distribution network impact’, TRB Committees Transp. Energy, 2010, pp. 121.
    17. 17)
      • 17. Karfopoulos, E.L., Hatziargyriou, N.D.: ‘A multi-agent system for controlled charging of a large population of electric vehicles’, IEEE Trans. Power Syst., 2013, 28, pp. 11961204.
    18. 18)
      • 18. Chaudhari, K.S., Kandasamy, N.K., Krishnan, A., et al: ‘Agent based aggregated behavior modelling for electric vehicle charging load’, IEEE Trans. Ind. Inf., 2018, p. 1-1, DOI: 10.1109/TII.2018.2823321.
    19. 19)
      • 19. Sheppard, C.J.R, Harris, A., Gopal, A.R.: ‘Cost-effective siting of electric vehicle charging infrastructure with agent-based modeling’, IEEE Trans. Transp. Electrification, 2016, 2, pp. 174189.
    20. 20)
      • 20. Jiang, C.X., Jing, Z.X., Cui, X.R., et al: ‘Multiple agents and reinforcement learning for modelling charging loads of electric taxis’, Appl. Energy, 2018, 222, pp. 158168.
    21. 21)
      • 21. Wu, Q.H, Liao, H.L.: ‘Function optimisation by learning automata’, Inf. Sci. (Ny), 2013, 220, pp. 379398.
    22. 22)
      • 22. Liao, H.L., Wu, Q.H., Li, Y.Z., et al: ‘Economic emission dispatching with variations of wind power and loads using multi-objective optimization by learning automata’, Energy Convers. Manage., 2014, 87, pp. 990999.
    23. 23)
      • 23. Sutton, R.S., Barto, A.G.: ‘Reinforcement learning: an introduction’ (MIT Press, Cambridge, MA, USA, 1998, 2nd edn.).
    24. 24)
      • 24. Shang, X, Li, Z, Ji, T, et al: ‘Online area load modeling in power systems using enhanced reinforcement learning’, Energies, 2017, 10, pp. 18391852.
    25. 25)
      • 25. Ye, D., Zhang, M., Sutanto, D.: ‘A hybrid multiagent framework with Q-learning for power grid systems restoration’, IEEE Trans. Power Syst., 2011, 26, pp. 24342441.
    26. 26)
      • 26. Zhang, X.S., Yu, T., Yang, B., et al: ‘Approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems’, Energy Convers. Manage., 2015, 106, pp. 543556.
    27. 27)
      • 27. Liu, J.: ‘Electric vehicle charging infrastructure assignment and power grid impacts assessment in Beijing’, Energy Policy, 2012, 51, pp. 544557.
    28. 28)
      • 28. Shahraki, N., Cai, H., Turkay, M., et al: ‘Optimal locations of electric public charging stations using real world vehicle travel patterns’, Transp. Res. D, 2015, 41, pp. 165176.
    29. 29)
      • 29. Jia, L., Hu, Z.C., Song, Y.H., et al: ‘Optimal siting and sizing of electric vehicle charging stations’. Proc. IEEE Electric Vehicle Conf., Greenville, SC, USA, March 2012, pp. 16.
    30. 30)
      • 30. Awasthi, A., Venkitusamy, K., Sanjeevikumar, P., et al: ‘Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm’, Energy, 2017, 133, pp. 7078.
    31. 31)
      • 31. Shojaabadi, S., Abapour, S., Abapour, M., et al: ‘Optimal planning of plug-in hybrid electric vehicle charging station in distribution network considering demand response programs and uncertainties’, IET Gener. Transm. Distrib., 2016, 10, pp. 33303340.
    32. 32)
      • 32. Khalkhali, K., Abapour, S., Moghaddas-Tafreshi, S.M., et al: ‘Application of data envelopment analysis theorem in plug-in hybrid electric vehicle charging station planning’, IET Gener. Transm. Distrib., 2015, 9, pp. 666676.
    33. 33)
      • 33. Erdinc, O., Tascikaraoglu, A., Paterakis, N.G., et al: ‘Comprehensive optimization model for sizing and siting of DG units, EV charging stations and energy storage systems’, IEEE Trans. Smart Grid, 2017, 99, pp. 11.
    34. 34)
      • 34. Wang, G., Xu, Z., Wen, F., et al: ‘Traffic-constrained multiobjective planning of electric-vehicle charging stations’, IEEE Trans. Power Deliv., 2013, 28, pp. 23632372.
    35. 35)
      • 35. Zhang, H., Moura, S., Hu, Z., et al: ‘PEV fast-charging station siting and sizing on coupled transportation and power networks’, IEEE Trans. Smart Grid, 2016, 99, p. 1.
    36. 36)
      • 36. Guo, S., Zhao, H.: ‘Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective’, Appl. Energy, 2015, 158, pp. 390402.
    37. 37)
      • 37. Zhang, H., Hu, Z., Xu, Z., et al: ‘An integrated planning framework for different types of PEV charging facilities in urban area’, IEEE Trans. Smart Grid, 2017, 7, pp. 22732284.
    38. 38)
      • 38. Abido, M.A., Ahmed, M.W.: ‘Multi-objective optimal power flow considering the system transient stability’, IET Gener. Transm. Distrib., 2016, 10, pp. 42134221.
    39. 39)
      • 39. Paterakis, N.G., Mazza, A., Santos, S.F., et al: ‘Multi-objective reconfiguration of radial distribution systems using reliability indices’, IEEE Trans. Power Syst., 2016, 31, pp. 10481062.
    40. 40)
      • 40. Yang, J.B., Singh, M.G.: ‘An evidential reasoning approach for multiple-attribute decision making with uncertainty’, IEEE Trans. Syst. Man Cybern., 1994, 24, pp. 118.
    41. 41)
      • 41. Yang, J.B., Xu, D.L.: ‘On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty’, IEEE Trans. Syst. Man Cybern. A, Syst. Hum., 2002, 32, pp. 289304.
    42. 42)
      • 42. Shafer, G.: ‘Mathematical theory of evidence’ (Princeton University Press, Princeton, NJ, USA, 1976).
    43. 43)
      • 43. Chen, T.D., Kockelman, K.M., Hanna, J.P.: ‘Operations of a shared, autonomous, electric vehicle fleet: implications of vehicle & charging infrastructure decisions’, Transp. Res. A, Policy Pract., 2016, 94, pp. 243254.
    44. 44)
      • 44. Mueller, K., Sgouridis, S.P.: ‘Simulation-based analysis of personal rapid transit systems: service and energy performance assessment of the Masdar City PRT case’, J. Adv. Transp., 2011, 45, pp. 252270.
    45. 45)
      • 45. Jing, P., Williams, R.J.: ‘Incremental multi-step Q-learning’, Mach. Learn., 1994, 22, pp. 226232.
    46. 46)
      • 46. Ahuja, A., Das, S., Pahwa, A.: ‘An AIS-ACO hybrid approach for multi-objective distribution system reconfiguration’, IEEE Trans. Power Syst., 2008, 22, pp. 11011111.
    47. 47)
      • 47. Li, F., Liu, T.Q., Jiang, D.L.: ‘Distribution network reconfiguration with multi-objective based on improved immune algorithm’, Power Syst. Technol., 2011, 7, pp. 134138.
    48. 48)
      • 48. Electric vehicle news: ‘BYD e6 electric taxis hit roads in south China’, 2010. URL Available at http://www.electric-vehiclenews.com/2010/05/byd-e6-electric-taxis-hit-roads-in.html, accessed May 2010.
    49. 49)
      • 49. China Southern Power Grid: ‘Guangzhou electricity price list’, 2017. URL Available at https://95598.guangzhou.csg.cn/help/wzcx.do, accessed August 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1907
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1907
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address