Application of generalised cross-entropy method in probabilistic power flow

Application of generalised cross-entropy method in probabilistic power flow

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a new powerful method for probability density function (PDF) estimation of the probabilistic power flow problem results. The proposed method works on a prior density function to improve its potential PDF estimation. The generalised cross-entropy method is used to refine the initial dataset. Most of the existing methods for PDF estimation do not provide a sparse result and rely on approximation and simplification. Compared to the other conventional methods, the proposed method has some remarkable features in density estimation. Low computational burden or high-speed response and high-precision results are the most prominent features of the proposed method. The method can deal with a correlated problem which is considered the correlation between uncertain parameters. It is tested on IEEE 14-bus and IEEE 118-bus systems, considering the non-stationary loads, some renewable energy resources and their correlations. The results of the proposed method are compared against more accurate results obtained from Monte Carlo simulation and some other conventional methods in density estimation. Comparisons confirm the high accuracy level and speed of the proposed density estimator against the other methods.


    1. 1)
      • 1. Tung, Y., Yen, B.: ‘Hydro systems engineering uncertainty analysis’ (McGraw-Hill, NY, USA, 2005).
    2. 2)
      • 2. Rubinstein, R., Kroese, D.: ‘Simulation and the Monte Carlo method’ (Wiley, Hoboken, NJ, USA, 2011).
    3. 3)
      • 3. Villanueva, D., Pazos, J.L., Feijoo, A.: ‘Probabilistic load flow including wind power generation’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 16591667.
    4. 4)
      • 4. Allan, R., Al-Shakarchi, M.G.: ‘Probabilistic techniques in ac load flow analysis’, Proc. Inst. Electr. Eng., 1977, l24, (2), pp. 154160.
    5. 5)
      • 5. Allan, R., Leite da Silva, A., Burchett, R.: ‘Evaluation methods and accuracy in probabilistic load flow solutions’, IEEE Trans. Power Appar. Syst., 1981, 100, (5), pp. 25392546.
    6. 6)
      • 6. Allan, R., Leite da Silva, A.: ‘Probabilistic load flow using multilinearization’, IEE Proc. C, Gener. Transm. Distrib., 1981, 128, (5), pp. 280287.
    7. 7)
      • 7. Oke, O., Thomas, D., Asher, G.: ‘A new probabilistic load flow method for systems with wind penetration’. Conf. Rec. IEEE Int. Conf. Power Techniques, Trondheim, Norway, 2011, pp. 16.
    8. 8)
      • 8. Fan, M., Vittal, V., Heydt, G., et al: ‘Probabilistic power flow studies for transmission systems with photovoltaic generation using cumulants’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 22512261.
    9. 9)
      • 9. Zhang, P., Lee, S.: ‘Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion’, IEEE Trans. Power Syst., 2004, 19, (1), pp. 676682.
    10. 10)
      • 10. Morales, J., Perez-Ruiz, J.: ‘Point estimate schemes to solve the probabilistic power flow’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 15941601.
    11. 11)
      • 11. Su, C.: ‘Probabilistic load flow computation using point estimate method’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 18431851.
    12. 12)
      • 12. Caramia, P., Carpinelli, G., Varilone, P.: ‘Point estimate schemes for probabilistic three-phase load flow’, Electr. Power Syst. Res., 2010, 80, (2), pp. 168175.
    13. 13)
      • 13. Botev, Z., Grotowski, J., Kroese, D.: ‘Kernel density estimation via diffusion’, Ann. Stat., 2010, 38, (5), pp. 29162957.
    14. 14)
      • 14. Soleimanpour, N., Mohammadi, M.: ‘Probabilistic load flow by using nonparametric density estimators’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 37473755.
    15. 15)
      • 15. Botev, Z., Kroese, D.: ‘The generalized cross entropy method, with applications to probability density estimation’, Methodol. Comput. Appl. Probab., 2009, 13, (1), pp. 127.
    16. 16)
      • 16. Bo, R., Li, F.: ‘Probabilistic LMP forecasting considering load uncertainty’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 12791289.
    17. 17)
      • 17. Billinton, R., Huang, D.: ‘Effects of load forecast uncertainty on bulk electric system reliability evaluation’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 418425.
    18. 18)
      • 18. Karki, R., Hu, P., Billinton, R.: ‘A simplified wind power generation model for reliability evaluation’, IEEE Trans. Energy Convers., 2006, 21, (2), pp. 413418.
    19. 19)
      • 19. Mukund, R.: ‘Wind and solar power systems’ (CRC, Boca Raton, FL, USA, 1999).
    20. 20)
      • 20. Morales, J.M., Biringo, L., Conejo, A.J., et al: ‘Probabilistic power flow with correlated wind sources’, IET Gener. Transm. Distrib., 2010, 4, (5), pp. 641651.
    21. 21)
      • 21. Power Systems Test Case Archive. Available at

Related content

This is a required field
Please enter a valid email address