Entropy model for optimal coordination in high-voltage dielectric systems

Entropy model for optimal coordination in high-voltage dielectric systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study describes the use of entropy model for some systems used in the dielectric technique. In this manner, the changes considered in the breakdown voltage are similar to those described by the probability entropy formula. This is particularly the case due to the radius ratios of spherical and cylindrical electrode systems modelled in the high-voltage technique. The breakdown voltage variations in the spherical and cylindrical electrode systems are consistent with the Shannon formulation of Information. These information curves demonstrate how the system should be operated under optimal conditions and these curves exhibit entropy changes due to voltage and field strength.


    1. 1)
      • 1. Fröhlich, H.: ‘Theory of dielectrics: dielectric constant and dielectric loss’ (Clarendon Press, Oxford, UK, 1949), pp. 1213.
    2. 2)
      • 2. Johari, G.P.: ‘Effects of electric field on the entropy, viscosity, relaxation time, and glass-formation’, J. Chem. Phys., 2013, 138, p. 15.
    3. 3)
      • 3. Sisney, L.: ‘Organizational physics the science of growing a business’ (Lulu Press, Morrisville, NC, USA, 2012).
    4. 4)
      • 4. Antonio, Y.M., Périlhon, C., Descombes, G., et al: ‘Thermodynamic modelling of an ejector with compressible flow by a one-dimensional approach’, Entropy, 2012, 14, pp. 599613.
    5. 5)
      • 5. Christen, T.: ‘Modelling electric discharges with entropy production rate principles’, Entropy, 2009, 11, pp. 10421054.
    6. 6)
      • 6. Laskowski, R., Smyk, A., Rusowicz, A., et al: ‘Determining the optimum inner diameter of condenser tubes based on thermodynamic objective functions and an economic analysis’, Entropy, 2016, 18, p. 444.
    7. 7)
      • 7. Christen, T.: ‘Application of the maximum entropy production principle to electrical systems’, J. Phys. D, Appl. Phys., 2006, 39, pp. 44974503.
    8. 8)
      • 8. Ben-Naim, A.: ‘Entropy, Shannon's measure of information and Boltzmann's H-theorem’, Entropy, 2017, 19, p. 48.
    9. 9)
      • 9. Van, P.: ‘Unique additive information measures – Boltzmann–Gibbs–Shannon, Fisher and beyond’, Phys. A, Stat. Mech. Appl., 2006, 365–1, pp. 2833. Available at
    10. 10)
      • 10. Chakrabarti, C.G., Kajal, D.: ‘Boltzmann–Gibbs entropy: generalization and applications’, J. Biol. Phys., 1997, 23, pp. 163170.
    11. 11)
      • 11. Ladyman, J., Presnel, S., Short, A.J.: ‘The use of the information-theoretic entropy in thermodynamics’, Stud. Hist. Philos. Sci. B, Stud. Hist. Philos. Mod. Phys., 2008, 39, (2), pp. 315324. Available at
    12. 12)
      • 12. Sohrab, S.H.: ‘Boltzmann entropy of thermodynamics versus Shannon entropy of information theory’, Int. J. Mech., 2014, 8, (1), pp. 7384.
    13. 13)
      • 13. Kuffel, J., Zaengl, W.S., Kuffel, P.: ‘High voltage engineering fundamentals’ (Newnes Press, Oxford, UK, 2000), pp. 209212.
    14. 14)
      • 14. Titchener, M.R.: ‘A measure of information’. Proc. DCC 2000, Data Compression Conf., 2000, pp. 353362.
    15. 15)
      • 15. Shahkooh, K.A., Vahedian, A., Saghafi, F., et al: ‘Identification of effective key factors in success of information technology foresight using Shannon's entropy’. Fourth Int. Conf. Computer Sciences and Convergence Information Technology, 2009, pp. 134138.
    16. 16)
      • 16. Weilenmann, M., Kraemer, L., Faist, P., et al: ‘Axiomatic relation between thermodynamic and information theoretic entropies’, Phys. Rev. Lett., 2016, 117, p. 260601.
    17. 17)
      • 17. Lazarev, V.L.: ‘Analysis of systems based on entropy and information characteristics’, Tech. Phys., 2010, 55, (2), pp. 159165.
    18. 18)
      • 18. Lazarev, V.L.: ‘Control optimization based on the concepts of entropy potentials’. XX IEEE Int. Conf. Soft Computing and Measurements, 2017, pp. 2527.
    19. 19)
      • 19. Chen, J., Ye, J. F., Li, Y.: ‘A robust rotary machinery fault diagnosis approach based on entropy fusion and DS theory’. IEEE 13th Int. Conf. Signal Processing, 2016, pp. 14241428.
    20. 20)
      • 20. Ochs, W.: ‘Basic properties of the generalized Boltzmann–Gibbs–Shannon entropy’, Rep. Math. Phys., 1976, 9, (2), pp. 135155.

Related content

This is a required field
Please enter a valid email address