http://iet.metastore.ingenta.com
1887

PSO of power cable performance in complex surroundings

PSO of power cable performance in complex surroundings

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Underground cable performance indices such as maximum cable temperature and ampacity are non-continuous functions of the configuration parameters such as depth and width of various trench layers. In this respect, existing traditional gradient-type methods cannot be used to optimise such performance indices. This study presents an efficient methodology for optimising power cable thermal performance with respect to configuration parameters involving cable spacing, depth of burial and size of backfill. The new methodology integrates the powerful features of the finite elements (FEs) technique coupled with the flexibility and effectiveness of the particle swarm optimisation (PSO) algorithm in order to handle various geometrical parameters in the complex surrounding operating environment. The introduced methodology is tested using a commercial FE simulation package used in conjunction with developed PSO code. The integrated methodology can be employed to minimise the maximum cable temperature, minimise installation cost or maximise cable ampacity. Practical applications are presented for 15 kV cables, which demonstrate the usefulness and versatility of the presented methodology. Notable improvements have been achieved by optimising the cable trench configuration parameters. For example, the cable ampacity was maximised, optimising the cable spacing, barrier depth and backfill thermal conductivity, which resulted in an appreciable increase of 4.5%.

References

    1. 1)
      • 1. Neher, J.H., McGrath, M.H.: ‘The calculation of the temperature rise and load capability of cable systems’, AIEE Trans. (Power Appar. Syst.), 1957, 76, pp. 752772.
    2. 2)
      • 2. Garrido, C., Otero, A.F., Cidras, J.: ‘Theoretical model to calculate steady-state and transient ampacity and temperature in buried cables’, IEEE Trans. Power Deliv., 2003, 18, pp. 667678.
    3. 3)
      • 3. Simmons, D.M.: ‘Cable geometry and the calculation of current-carrying capacity’, AIEE Trans., 1923, 42, pp. 600615.
    4. 4)
      • 4. IEC 287.: ‘Calculation of the continuous current rating of cables (100% load factor)’ (International Electrotechnical Commission (IEC), 1982, 2nd edn.).
    5. 5)
      • 5. Baazzim, M.S., Al-Saud, M.S., El-Kady, M.A.: ‘Comparison of finite-element and IEC methods for cable thermal analysis under various operating environments’, Int. J. Electr., Electron. Sci. Eng., 2014, 8, (3), pp. 470475.
    6. 6)
      • 6. Brakelmann, H., Anders, G.: ‘Ampacity reduction factors for cables crossing thermally unfavorable regions’, IEEE Trans. Power Deliv., 2001, 16, pp. 444448.
    7. 7)
      • 7. Vaucheret, P., Hartlein, R.A., Black, W.Z.: ‘Ampacity derating factors for cables buried in short segments of conduit’, IEEE Trans. Power Deliv., 2005, 20, pp. 560565.
    8. 8)
      • 8. Foty, M.S., Anders, G.J., Croall, S.C.: ‘Cable environment analysis and the probabilistic approach to cable rating’, IEEE Trans. Power Deliv., 1990, 5, (3), pp. 16281633.
    9. 9)
      • 9. Flatabo, N.: ‘Transient heat conduction problem in power cables solved by the finite element method’, IEEE Trans. Power Appar. Syst., 1973, PAS-92, pp. 5663.
    10. 10)
      • 10. Hwang, C., Yi-Hsuan, J.: ‘Extensions to the finite element method for thermal analysis of underground cable systems’, Electr. Power Syst. Res., 2003, 64, (2), pp. 159164.
    11. 11)
      • 11. Nahman, J., Tanaskovic, M.: ‘Determination of the current carrying capacity of cables using the finite element method’, Electr. Power Syst. Res., 2002, 61, (2), pp. 109117.
    12. 12)
      • 12. Kim, S.W., Kim, H.H., Hahn, S.C, et al: ‘Coupled finite-element-analytic technique for prediction of temperature rise in power apparatus’, IEEE Trans. Magn., 2002, 38, pp. 921924.
    13. 13)
      • 13. Liang, Y.: ‘Steady-state thermal analysis of power cable systems in ducts using streamline upwind/Petrov–Galerkin finite element method’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (1), pp. 283290.
    14. 14)
      • 14. Nahman, J., Tanaskovic, M.: ‘Evaluation of the loading capacity of a pair of three-phase high voltage cable systems using the finite-element method’, Electr. Power Syst. Res., 2011, 81, pp. 15501555.
    15. 15)
      • 15. Al-Saud, M.S., El-Kady, M.A., Findlay, R.D.: ‘A new approach to underground cable performance assessment’, Electr. Power Syst. Res., 2007, 78, pp. 907918.
    16. 16)
      • 16. El-Kady, M.A.: ‘Optimization of power cable and thermal backfill configurations’, IEEE Trans. Power Appar. Syst., 1982, PAS-101, pp. 46814688.
    17. 17)
      • 17. Hoerauf, R.: ‘Ampacity application considerations for underground cables’, IEEE Trans. Ind. Appl., 2016, 52, (6), pp. 46384645.
    18. 18)
      • 18. Mitchell, J.K., Abdel-hadi, O.N.: ‘Temperature distribution around buried cables’, IEEE Trans. Power Appar. Syst., 1979, PAS-98, pp. 11581166.
    19. 19)
      • 19. Rasoulpoor, M., Mirzaie, M., Mirimani, S.: ‘Electrical and thermal analysis of single conductor power cable considering the lead sheath effect based on finite element method’, Iran. J. Electr. Electron. Eng., 2016, 12, (1), pp. 7381.
    20. 20)
      • 20. Zarchi, D., Vahidi, B., Moghimi Haji, M.: ‘Optimal configuration of underground cables to maximize total ampacity considering current harmonics’, IET Gener. Transm. Distrib., 2014, 8, (6), pp. 10901097.
    21. 21)
      • 21. Moutassem, W., Anders, G.J.: ‘Configuration optimization of underground cable for best ampacity’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 20372045.
    22. 22)
      • 22. Li, H.J.: ‘Estimation of thermal parameters and prediction of temperature rise in crane power cables’, IEE Proc. Gener. Transm. Distrib., 2004, 151, pp. 355360.
    23. 23)
      • 23. Al-Saud, M.S., El-Kady, M.A., Findlay, R.D.: ‘A novel finite-element optimization algorithm with applications to power cable thermal circuit design’. IEEE Power Engineering Society 2007 General Meeting, Tampa, FL, USA, June 2007, pp. 18.
    24. 24)
      • 24. Al-Saud, M.S.: ‘Assessment of thermal performance of underground current carrying conductors’, IET Proc. Gener., Transm. Distrib., 2011, 5, (6), pp. 630639.
    25. 25)
      • 25. Al-Saud, M.S., El-Kady, M.A., Findlay, R.D.: ‘Optimization of power cable thermal performance using finite-element generated gradient’. Proc. Ninth IASTED Int. Conf. Power and Energy Systems, Clearwater, FL, USA, January 2007, pp. 6368.
    26. 26)
      • 26. Kovac, N., Sarajcev, I., Poljak, D.: ‘A numerical-stochastic technique for underground cable system design’, IEE Proc. Gener. Transm. Distrib., 2016, 153, (2), pp. 181186.
    27. 27)
      • 27. Al-Saud, M.S.: ‘Improved assessment of power cable thermal capability in presence of uncertainties’. Asia-Pacific Power and Energy Engineering Conf. (APPEEC 2012), Shanghai, China, March 2012, pp. 14.
    28. 28)
      • 28. El-Kady, M.A., Chu, F.Y., Radkrishna, H.S., et al: ‘A probabilistic approach to power cable thermal analysis and ampacity evaluation’, IEEE Trans. Power Appar. Syst., 1984, PAS-103, pp. 27352740.
    29. 29)
      • 29. Al-Saud, M.S., El-Kady, M.A., Findlay, R.D.: ‘Combined simulation-experimental approach to power cable thermal loading assessment’, IET Proc. Gener., Transm. Distrib., 2008, 2, pp. 1321.
    30. 30)
      • 30. Malmedal, K., Bates, C., Cain, D.: ‘On the use of the law of times in calculating soil thermal stability and underground cable ampacity’, IEEE Trans. Ind. Appl., 2016, 52, (2), pp. 12151220.
    31. 31)
      • 31. Tarasiewicz, E., Kuffel, E., Grzybowski, S.: ‘Calculation of temperature distribution within cable trench backfill and the surrounding soil’, IEEE Trans. Power Appar. Syst., 1985, PAS-104, pp. 19731978.
    32. 32)
      • 32. Hwang, C.C.: ‘Calculation of thermal fields of underground cable systems with consideration of structural steels constructed in a duct bank’, IEE Proc. Gener. Transm. Distrib., 1977, 144, pp. 541545.
    33. 33)
      • 33. Rerak, M., Ocłoń, P.: ‘Thermal analysis of underground power cable system’, J. Therm. Sci., 2017, 26, (5), pp. 465471.
    34. 34)
      • 34. Alam, S., Dobbie, G., Koh, Y., et al: ‘Research on particle swarm optimization based clustering: a systematic review of literature and techniques’, Swarm Evol. Comput., 2014, 17, pp. 113.
    35. 35)
      • 35. Abrol, S., Kaur, M.: ‘A review on particle swarm optimization technique’, Int. J. Adv. Res. Sci. Eng. Technol., 2016, 3, (7), pp. 23972399.
    36. 36)
      • 36. Sharma, S.: ‘Particle swarm optimization evaluation, use and applications with electrical power system: review’, Int. J. Electr. Eng. (IIJEE), 2017, 5, (3), pp. 2830.
    37. 37)
      • 37. Yi, L.: ‘Study on an improved PSO algorithm and its application for solving function problem’, Int. J. Smart Home, 2016, 10, (3), pp. 5162.
    38. 38)
      • 38. Kareem1, M.H., Jassim, J.M., Al-Hareeb, N.K.: ‘Mathematical modelling of particle swarm optimization algorithm’, Int. J. Adv. Multidiscip. Res. (IJAMR), 2016, 3, (4), pp. 5459.
    39. 39)
      • 39. ANSYS 17.2 Simulation Package, ANSYS, Inc., Southpointe 2600 ANSYS Drive Canonsburg, PA 15317, USA ([email protected]), 2016.
    40. 40)
      • 40. Zhipeng, J., Wen, X., Yuan, X.: ‘Applying particle swarm optimization and differential evolution combined with finite element method to optimize cable’. Proc. Second Int. Conf. Computer Science and Electronics Engineering, 2013, pp. 174177.
    41. 41)
      • 41. Amrita, M., Jajimoggala, S.: ‘Design optimization by using particle swarm optimization in MATLAB and APDL in ANSYS’, Int. J. Eng. Sci. Technol., 2012, 4, (5), pp. 18761885.
    42. 42)
      • 42. Assadi, M.K., Zahraee, S.M., Taghdisi, J.: ‘Integration of computer simulation, design of experiments and particle swarm optimization to optimize the production line efficiency’, Int. J. Swarm Intell. Evol. Comput., 2016, 5, (2), p. 4.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1814
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1814
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address