Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free New reward and penalty scheme for electric distribution utilities employing load-based reliability indices

Electric distribution utilities are required to continuously deliver reliable electric power to their customers. Regulatory utility commissions often practise reward and penalty schemes to regulate reliability performance of utility companies annually with respect to a desired performance targets. However, the conventional regulation procedures are commonly found based on the customer-based standard reliability indices, which are not able to discern the service characteristics behind the electric meters and, hence, fail to holistically characterise the actual impact of electricity interruption. This study proposes a new method to evaluate the load-based reliability indices in power distribution systems using advanced metering infrastructure data. Furthermore, the authors introduce a reward/penalty regulation scheme for utility regulators to provide a reliability oversight using the proposed load-based reliability metrics. The new load-based reliability metric and the reward/penalty scheme proposed bring about superior advantages as the distribution grids become further complex with a high penetration of distributed energy resources and enabled microgrid flexibilities. Numerical analyses on different settings with and without microgrid considerations reveal the applicability and effectiveness of the proposed approach in real-world scenarios.

References

    1. 1)
      • 24. Quilumba, F.L., Lee, W.J., Huang, H., et al: ‘Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 911918.
    2. 2)
      • 20. Al-Muhaini, M., Heydt, G.T.: ‘Evaluating future power distribution system reliability including distributed generation’, IEEE Trans. Power Deliv., 2013, 28, (4), pp. 22642272.
    3. 3)
      • 11. Mohammadnezhad-Shourkaei, H., Fotuhi-Firuzabad, M.: ‘Impact of penalty-reward mechanism on the performance of electric distribution systems and regulator budget’, IET Gener. Transm. Distrib., 2010, 4, (7), pp. 770779.
    4. 4)
      • 34. Cheng, L., Chang, Y., Lin, J., et al: ‘Power system reliability assessment with electric vehicle integration using battery exchange mode’, IEEE Trans. Sustain. Energy, 2013, 4, (4), pp. 10341042.
    5. 5)
      • 31. ‘IEEE guide for electric power distribution reliability indices’, IEEE Std. 1366-2012 (Revision of IEEE Std. 1366-2003), 2012, pp. 143.
    6. 6)
      • 16. Alvehag, K., Awodele, K.: ‘Impact of reward and penalty scheme on the incentives for distribution system reliability’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 386394.
    7. 7)
      • 12. Mohammadnezhad-Shourkaei, H., Abiri-Jahromi, A., Fotuhi-Firuzabad, M.: ‘Incorporating service quality regulation in distribution system maintenance strategy’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 24952504.
    8. 8)
      • 27. Hayes, B., Gruber, J., Prodanovic, M.: ‘Short-term load forecasting at the local level using smart meter data’. 2015 IEEE Eindhoven PowerTech, Eindhoven, 2015, pp. 16.
    9. 9)
      • 14. ‘Jamaica public service company limited tariff review for period 2014–2019’, 2015. Available at http://www.our.org.jm/ourweb/sites/default/files/C-JPS%20Tariff%20Review%20for%20Period%202014-2019_Determination%20Notice.compressed.pdf.
    10. 10)
      • 4. ‘Next generation smart meters and AMI communications’, 2015. Available at http://www.tpfz.com/pdfs/TP%20AMI%20Solution%20WP%20092413.pdf.
    11. 11)
      • 30. ‘Quality controlled local climatological data’. Available at http://www.ncdc.noaa.gov/qclcd/QCLCD?prior=N.
    12. 12)
      • 28. Ziekow, H., Goebel, C., Struker, J., et al: ‘The potential of smart home sensors in forecasting household electricity demand’. 2013 IEEE Int. Conf. Smart Grid Communications (SmartGridComm), Vancouver, BC, 2013, pp. 229234.
    13. 13)
      • 1. ‘The commission's investigation into modernizing the energy delivery structure for increased sustainability’, 2015. Available at http://www.dcpsc.org/Newsroom/HotTopics/Grid-Modernization/Realizing-The-Full-Potential-of-Advanced-Metering.aspx.
    14. 14)
      • 5. Liu, D., Yuan, X., Li, Q., et al: ‘Design of a hierarchical infrastructure for regional energy internet’. 2015 Fifth Int. Conf. Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, 2015, pp. 26032607.
    15. 15)
      • 13. Mohammadnezhad-Shourkaei, H., Fotuhi-Firuzabad, M., Billinton, R.: ‘Integration of clustering analysis and reward/penalty mechanisms for regulating service reliability in distribution systems’, IET Gener. Transm. Distrib., 2011, 5, (11), pp. 11921200.
    16. 16)
      • 15. Luan, S.W., Teng, J.H., Chan, S.Y., et al: ‘Development of an automatic reliability calculation system for advanced metering infrastructure’. 2010 Eighth IEEE Int. Conf. Industrial Informatics, Osaka, 2010, pp. 342347.
    17. 17)
      • 18. Wang, S., Li, Z., Wu, L., et al: ‘New metrics for assessing the reliability and economics of microgrids in distribution system’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 28522861.
    18. 18)
      • 10. Simab, M., Alvehag, K., Soder, L., et al: ‘Designing reward and penalty scheme in performance based regulation for electric distribution companies’, IET Gener. Transm. Distrib., 2012, 6, (9), pp. 893901.
    19. 19)
      • 26. Silva, P.G.D., Ilic, D., Karnouskos, S.: ‘The impact of smart grid prosumer grouping on forecasting accuracy and its benefits for local electricity market trading’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 402410.
    20. 20)
      • 32. Elmitwally, A., Elsaid, M., Elgamal, M., et al: ‘A fuzzy-multiagent self-healing scheme for a distribution system with distributed generations’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 26122622.
    21. 21)
      • 33. Sullivan, M.J., Schellenberg, J., Blundell, M.: ‘Updated value of service reliability estimates for electric utility customers in the United States’. Lawrence Berkeley National Laboratory, 2015. Available at https://escholarship.org/uc/item/10r8d6xg.
    22. 22)
      • 9. Dehghanian, P., Fotuhi-Firuzabad, M., Aminifar, F., et al: ‘A comprehensive scheme for reliability centered maintenance in power distribution systems – part i: methodology’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 761770.
    23. 23)
      • 8. Dehghanian, P., Aslan, S., Dehghanian, P.: ‘Quantifying power system resiliency improvement using network reconfiguration’. 2017 IEEE 60th International Midwest Symposium on Circuit and Systems (MWSCAS), Boston, MA, USA, August 2017, pp. 13641367.
    24. 24)
      • 17. Moshari, A., Ebrahimi, A.: inKarki, R., Billinton, R., Verma, A.K. (Eds.): ‘A load management perspective of the smart grid: simple and effective tools to enhance reliability’ (Springer India, New Delhi, 2014), pp. 133146.
    25. 25)
      • 35. ‘Daily real-time lmp’. Available at http://www.pjm.com/markets-and-operations/energy/real-time/lmp.aspx.
    26. 26)
      • 3. Luan, S.W., Teng, J.H., Chan, S.Y., et al: ‘Development of a smart power meter for AMI based on Zigbee communication’. 2009 Int. Conf. Power Electronics and Drive Systems (PEDS), Taipei, 2009, pp. 661665.
    27. 27)
      • 22. Ge, S., Xu, L., Liu, H., et al: ‘Reliability assessment of active distribution system using Monte Carlo simulation method’, J. Appl. Math., 2014, 2014, pp. 110.
    28. 28)
      • 6. Peppanen, J., Reno, M.J., Thakkar, M., et al: ‘Leveraging AMI data for distribution system model calibration and situational awareness’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 20502059.
    29. 29)
      • 19. Tarnate, W.R.D., Cruz, I.B.N.C., del Mundo, R.D., et al: ‘Maximizing service restoration in reliability optimization of radial distribution systems’. TENCON 2012 IEEE Region 10 Conf., Cebu, 2012, pp. 16.
    30. 30)
      • 23. Hernandez, L., Baladron, C., Aguiar, J.M.: ‘A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants’, IEEE Commun. Mag., 2013, 51, (1), pp. 106113.
    31. 31)
      • 2. Yi, Z., Etemadi, A.H.: ‘Line-to-line fault detection for photovoltaic arrays based on multiresolution signal decomposition and two-stage support vector machine’, IEEE Trans. Ind. Electron., 2017, 64, (11), pp. 85468556.
    32. 32)
      • 7. Peternel, B., Lovrencic, T., Gamulin, N., et al: ‘Methodology and key performance indicators for resilient dense prosumer oriented DEG smart grid energy and communications network’, 2016. Available at http://sunseed-fp7.eu/wp-content/uploads/2015/04/SUNSEED-WP2-D222-V20-Final.pdf.
    33. 33)
      • 21. Chowdhury, A., Koval, D.: ‘Power distribution system reliability: practical methods and applications’ (John Wiley & Sons, Hoboken, NJ, USA, 2011), pp. 317374.
    34. 34)
      • 25. Sevlian, R.A., Rajagopal, R.: ‘A model for the effect of aggregation on short term load forecasting’. 2014 IEEE PES General Meeting Conf. Exposition, National Harbor, MD, 2014, pp. 15.
    35. 35)
      • 29. Deoras, A.: ‘Electricity load and price forecasting with MATLAB’, 2010. Available at http://www.mathworks.com/discovery/load-forecasting.html.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1809
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1809
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address