Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Enhanced heat transfer characteristics and ampacity analysis of a high-voltage overhead transmission line under aeolian vibration

High-voltage overhead transmission lines feature both electrical conductivity and mechanical strength properties. Current studies of the aeolian vibration of transmission lines focus primarily on the mechanical properties of these lines but rarely address the lines’ enhanced heat transfer properties, which directly affect transmission line ampacity. In this study, the authors analyse the vibration-enhanced heat transfer characteristics of an energised transmission line undergoing aeolian vibration based on the coupled fluid–solid numerical method. The allowable ampacity is calculated using the heat balance method, which accounts for the heat transfer enhancement effect arising from aeolian vibration. Various parameters, such as the vibration amplitude and the ratio between the natural frequency of the conductor and the frequency of the vortex shedding, are investigated. The results demonstrate that aeolian vibration can effectively improve the heat dissipation effect of the conductor and significantly increase the line ampacity. The maximum heat transfer effect occurs in the lock-in region, in which the allowed ampacity can increase by more than 6%.

References

    1. 1)
      • 35. Li, Y.: ‘Transient simulation of heat balance and risk assessment on overhead transmission line’. Master thesis, College of Resources and Environmental Sciences of Chongqing University, Chongqing, China, 2013.
    2. 2)
      • 17. Griffin, M.: ‘Modification of vortex shedding in the synchronization range’, J. Fluids Eng., 1983, 105, (1), p. 123, doi: 10.1115/1.3240933.
    3. 3)
      • 4. CIGRE: ‘Thermal behavior of overhead conductors’ (CIGRE WG12 ELECTRA, Paris, France, 1992), no. 144.
    4. 4)
      • 11. Diana, G., Cheli, F., Fossati, F., et al: ‘Aeolian vibrations of overhead transmission lines: computation in turbulence conditions’, J. Wind Eng. Ind. Aerodyn., 1993, s46-47, (93), pp. 639648, doi: 10.1016 /0167-6105(93)90332-I.
    5. 5)
      • 3. IEEE Power Engineering Society: ‘IEEE standard for calculating the current-temperature of bare overhead conductors’. IEEE Standard 738-2012, December 2013.
    6. 6)
      • 32. Kubis, A., Rehtanz, C.: ‘Synchrophasor based thermal overhead line monitoring considering line spans and thermal transients’, IET Gener. Transm. Distrib., 2016, 10, (5), pp. 12321239, doi: 10.1049/iet-gtd.2015.0852.
    7. 7)
      • 12. Wiecek, B., De Mey, G., Chatziathanasiou, V., et al: ‘Harmonic analysis of dynamic thermal problems in high voltage overhead transmission lines and buried cables’, Int. J. Elect. Power Energy Syst., 2014, 58, (6), pp. 199205, doi: 10.1016/j.ijepes.2014.01.031.
    8. 8)
      • 29. Xu, F.: ‘Numerical simulation of fluid-sold coupling vibration and flow control of structures’. Ph.D. dissertation, School of Civil Engineering, Harbin Inst. Technol., June 2009.
    9. 9)
      • 13. Baratchi, F., Saghafian, M., Baratchi, B.: ‘Numerical investigation on lock-in condition and convective heat transfer from an elastically supported cylinder in a cross flow’, J. Fluids Eng., 2013, 135, (3), p. 031103, doi: 10.1115/1.4023192.
    10. 10)
      • 24. Franke, R., Rodi, W., Schönung, B.: ‘Numerical calculation of laminar vortex-shedding flow past cylinders’, J. Wind Eng. Ind. Aerodyn., 1990, 35, (1), pp. 237257, doi: 10.1016/0167-6105(90)90219-3.
    11. 11)
      • 5. Staszewski, L., Rebizant, W.: ‘The differences between IEEE and CIGRE heat balance concepts for line ampacity considerations’. Proc. Int. Symp. Modern Electric Power Systems (MEPS 2010), Poland, September 2010, pp. 14.
    12. 12)
      • 20. Wallace, P.G.: ‘The failure of overhead ground wires caused by aeolian vibration’, Electr. Eng., 1952, 71, (1), pp. 7779, doi: 10.1109/EE.1952.6437902.
    13. 13)
      • 28. Zhou, C.Y., So, R.M.C., Lam, K.: ‘Vortex-induced vibrations of an elastic circular cylinder’, J. Fluids Struct., 1999, 13, (2), pp. 165189, doi: 10.1006/jfls.1998.0195.
    14. 14)
      • 26. Knudsen, J.G., Katz, D.L., Street, R.E.: ‘Fluid dynamics and heat transfer’, Phys. Today, 1959, 12, (3), pp. 4044, doi: 10.1063/1.3060727.
    15. 15)
      • 1. Jorge, R.S., Hertwich, E.G.: ‘Environmental evaluation of power transmission in Norway’, Appl. Energy, 2013, 101, (4), pp. 513520, doi: 10.1016/j.apenergy.2012.06.004.
    16. 16)
      • 6. Schmidt, N.P.: ‘Comparison between IEEE and CIGRE ampacity standards’, IEEE Trans. Power Deliv., 1999, 14, (4), pp. 15551559, doi: 10.1109/61.796253.
    17. 17)
      • 14. Oliveira, R.E., Preire, D.G.: ‘Dynamical modelling and analysis of aeolian vibrations of single conductors’, IEEE Trans. Power Deliv., 1994, 9, (3), pp. 16851693, doi: 10.1109/61.311193.
    18. 18)
      • 8. Varney, T.: ‘Notes on the vibration of transmission-line conductors’, J. AIEE, 1926, 45, (10), pp. 953957, doi: 10.1109/JAIEE.1926.6537302.
    19. 19)
      • 9. Ervik, M., Berg, A., Boelle, A.: ‘Report on aeolian vibration of power overhead lines’, Electra, 2006, 124, pp. 4177.
    20. 20)
      • 33. Shu, J., Guan, R., Wu, L.: ‘Optimal power flow in distribution network considering spatial electro-thermal coupling effect’, IET Gener. Transm. Distrib., 2017, 11, (5), pp. 11621169, doi: 10.1049/iet-gtd.2016.0909.
    21. 21)
      • 7. Arroyo, A., Castro, P., Martinez, R., et al: ‘Comparison between IEEE and CIGRE thermal behaviour standards and measured temperature on a 132-kV overhead power line’, Energies, 2015, 8, (12), pp. 1366013671, doi: 10.3390/en81212391.
    22. 22)
      • 2. Bartos, M., Chester, M., Johnson, N., et al: ‘Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States’, Environ. Res. Lett., 2016, 11, (11), p. 114008, doi: 10.1088/1748-9326/11/11/114008.
    23. 23)
      • 19. Tsui, Y.T.: ‘Modern developments in aeolian vibration’, Electr. Power Syst. Res., 1988, 15, (3), pp. 173179, doi: 10.1016/0378-7796(88)90021-1.
    24. 24)
      • 27. Churchill, S.W., Bernstein, M.: ‘A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow’, J. Heat Transfer, 1977, 99, (2), pp. 300306, doi: 10.1115/1.3450685.
    25. 25)
      • 23. Cao, F.C., Xiang, H.F.: ‘Numerical calculation of unsteady flow around a cylinder and vortex induced vibration’, J. Hydrodyn., 2001, 16, (1), pp. 111117.
    26. 26)
      • 21. Zhou, Z.R., Cardou, A., Goudreau, S., et al: ‘Fundamental investigations of electrical conductor fretting fatigue’, Tribol. Int., 1996, 29, (3), pp. 221232, doi: 10.1016/0301-679X (95)00074-E.
    27. 27)
      • 31. Albizu, I., Fernandez, E., Mazon, A.J., et al: ‘Influence of the conductor temperature error on the overhead line ampacity monitoring systems’, IET Gener. Transm. Distrib., 2011, 5, (4), pp. 440447, doi: 10.1049/iet-gtd.2010.0470.
    28. 28)
      • 25. Žkauskas, A.: ‘Heat transfer from tubes in crossflow’, Adv. Heat Transf., 1987, 18, pp. 87159, doi: 10.1016/S0065-2717(08)70118-7.
    29. 29)
      • 18. Williamson, H.K., Govardhan, R.: ‘Vortex-induced vibrations’, Annu. Rev. Fluid Mech., 2004, 36, (1), pp. 413455, doi: 10.1146/annurev.fluid.36. 050802.122128.
    30. 30)
      • 16. Griffin, M., Ramberg, S.E.: ‘The vortex-street wakes of vibrating cylinders’, J. Fluid Mech., 1974, 66, (3), pp. 553576, doi: 10.1017/S002211207400036X.
    31. 31)
      • 15. Feng, C.: ‘The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders’. M.A.Sc. thesis, Univ. British Columbia, Vancouver, BC, Canada, 1968.
    32. 32)
      • 22. ANSYS Fluent Theory Guide, Release 17.0, ANSYS Inc., USA, January 2016.
    33. 33)
      • 34. Tao, W.Q.: ‘Advances in computational heat transfer’ (Science Press, Beijing, 2000).
    34. 34)
      • 10. Ervik, M., et al: ‘Report on aeolian vibration’, Electra, 1989, 124, pp. 4077.
    35. 35)
      • 30. Cheng, C.-H., Chen, H.-N., Aung, W.: ‘Experimental study of the effect of transverse oscillation on convection heat transfer from a circular cylinder’, J. Heat Transf., 1977, 119, (3), pp. 474482, doi: 10.1115/1.2824121.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1764
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1764
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address