Optimal planning and operation of static VAR compensators in a distribution system with non-linear loads

Optimal planning and operation of static VAR compensators in a distribution system with non-linear loads

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents an innovative design for the optimal sizing, placement, and dispatch approach of distribution static var compensators (D-SVCs) in a radial power distribution system to improve the technical and economic aspects of the grid. The approach incorporates the total harmonic distortion (THD) effects into the assessment with the presence of non-linear loads. A multi-state particle swarm optimisation algorithm is also proposed, at first to select the placement and size and then to select the dispatch strategy of D-SVCs. Three IEEE test systems were used for the case study to show the efficacy of the method. The results reveal that the approach is viable, and it determines the cases where the highest savings were achievable fulfilling the grid voltage and THD constraints.


    1. 1)
      • 1. Caillé, A., Al-Moneef, M., de Castro, F.B., et al: ‘2007 survey of energy resources’, World Energy Council, 2007, 2007.
    2. 2)
      • 2. Yano, M., Abe, S., Ohno, E.: ‘History of power electronics for motor drives in Japan’. IEEE Conf. History of Electronics, Bletchley Park, UK, June 2004, pp. 111.
    3. 3)
      • 3. Pereira, F.C., Souto, O.C., De Oliveira, J.C., et al: ‘An analysis of costs related to the loss of power quality’. Harmonics and Quality of Power Proc., 1998. Proc. 8th Int. Conf., Athens, Greece, October 1998, pp. 777782.
    4. 4)
      • 4. Barker, P.P., De Mello, R.W.: ‘Determining the impact of distributed generation on power systems. I. Radial distribution systems’. 2000 IEEE Power Engineering Society Summer Meeting, Seattle, WA, USA, August 2000, pp. 16451656.
    5. 5)
      • 5. Shuaib, Y.M., Kalavathi, M.S., Rajan, C.C.A.: ‘Optimal capacitor placement in radial distribution system using gravitational search algorithm’, Int. J. Electr. Power Energy Syst., 2015, 64, pp. 384397.
    6. 6)
      • 6. Vuletić, J., Todorovski, M.: ‘Optimal capacitor placement in distorted distribution networks with different load models using penalty free genetic algorithm’, Int. J. Electr. Power Energy Syst., 2016, 78, pp. 174182.
    7. 7)
      • 7. Javadi, M.S., Nezhad, A.E., Siano, P., et al: ‘Shunt capacitor placement in radial distribution networks considering switching transients decision making approach’, Int. J. Electr. Power Energy Syst., 2017, 92, pp. 167180.
    8. 8)
      • 8. Kawasaki, S., Ogasawara, G.: ‘Influence analyses of harmonics on distribution system in consideration of non-linear loads and estimation of harmonic source’, J. Int. Council Electr. Eng., 2017, 7, pp. 7682.
    9. 9)
      • 9. Noroozian, M., Petersson, N., Thorvaldson, B., et al: ‘Benefits of SVC and STATCOM for electric utility application’. 2003 IEEE PES Transmission and Distribution Conf. Exposition, Dallas, TX, USA, September 2003, pp. 11431150.
    10. 10)
      • 10. Saravanan, M., Slochanal, S.M.R., Venkatesh, P., et al: ‘Application of particle swarm optimization technique for optimal location of FACTS devices considering cost of installation and system loadability’, Electr. Power Syst. Res., 2007, 77, pp. 276283.
    11. 11)
      • 11. Benabid, R., Boudour, M., Abido, M.: ‘Optimal location and setting of SVC and TCSC devices using non-dominated sorting particle swarm optimization’, Electr. Power Syst. Res., 2009, 79, pp. 16681677.
    12. 12)
      • 12. Sirjani, R., Mohamed, A., Shareef, H.: ‘Optimal allocation of shunt Var compensators in power systems using a novel global harmony search algorithm’, Int. J. Electr. Power Energy Syst., 2012, 43, pp. 562572.
    13. 13)
      • 13. Sirjani, R., Mohamed, A.: ‘Improved harmony search algorithm for optimal placement and sizing of static var compensators in power systems’. 2011 First International Conference on Informatics and Computational Intelligence (ICI, Bandung, Indonesia, December 2011, pp. 295300.
    14. 14)
      • 14. Udgir, S., Srivastava, L., Pandit, M.: ‘Optimal placement and sizing of SVC for loss minimization and voltage security improvement using differential evolution algorithm’. Recent Advances and Innovations in Engineering (ICRAIE), Jaipur, India, May 2014, pp. 16.
    15. 15)
      • 15. Abdulla, M., Salameh, Z.: ‘A graphical method to determine the harmonic magnification in radial feeders due to SVC operation’, Electr. Power Syst. Res., 2001, 57, pp. 914.
    16. 16)
      • 16. Wang, H.L., Lin, M.S.: ‘A probabilistic approach for SVC placement with harmonic control and reactive power compensation’. 2015 IEEE Innovative Smart Grid Technologies – Asia (ISGT ASIA), 2015, pp. 16.
    17. 17)
      • 17. Khodabakhshian, A., Andishgar, M.H.: ‘Simultaneous placement and sizing of DGs and shunt capacitors in distribution systems by using IMDE algorithm’, Int. J. Electr. Power Energy Syst., 2016, 82, pp. 599607.
    18. 18)
      • 18. Muthukumar, K., Jayalalitha, S.: ‘Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique’, Int. J. Electr. Power Energy Syst., 2016, 78, pp. 299319.
    19. 19)
      • 19. Rath, A., Ghatak, S.R., Goyal, P.: ‘Optimal allocation of distributed generation (DGs) and static VAR compensator (SVC) in a power system using revamp voltage stability indicator’. 2016 National Power Systems Conf. (NPSC), Bhubaneswar, India, December 2016, pp. 16.
    20. 20)
      • 20. Nguyen, K.P., Fujita, G., Dieu, V.N.: ‘Cuckoo search algorithm for optimal placement and sizing of static var compensator in large-scale power systems’, J. Artif. Intell. Soft Computing Res., 2016, 6, pp. 5968.
    21. 21)
      • 21. Mahdavian, M., Shahgholian, G., Shafaghi, P., et al: ‘Power system oscillations improvement by using static VAR compensator’. 2016 13th Int. Conf. on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Mai, Thailand, 28 June - 1 July 2016, pp. 15.
    22. 22)
      • 22. Faiz, J., Shahgholian, G.: ‘Modeling and damping controller design for static var compensator’. 2015 IEEE 5th Int. Conf. on Power Engineering, Energy and Electrical Drives (POWERENG), Riga, Latvia, May 2015, pp. 405409.
    23. 23)
      • 23. Pisica, I., Bulac, C., Toma, L., et al: ‘Optimal SVC placement in electric power systems using a genetic algorithms based method’. PowerTech, 2009 IEEE, Bucharest, 2009, pp. 16.
    24. 24)
      • 24. Burch, G.-K., Chang, C., Hatziadoniu, M., et al: ‘Impact of aggregate linear load modeling on harmonic analysis: a comparison of common practice and analytical models’, IEEE Trans. Power Deliv., 2003, 18, pp. 625630.
    25. 25)
      • 25. Wagner, V., Balda, J.C., Griffith, D., et al: ‘Effects of harmonics on equipment’, IEEE Trans. Power Deliv., 1993, 8, pp. 672680.
    26. 26)
      • 26. Rozenblat, L.:(2004, A primer on work and ac power in electrical circuit definitions and math equations for watt, VA, power factor and THD. Available:
    27. 27)
      • 27. Glover, J.D., Sarma, M.S., Overbye, T.: ‘Power system analysis & design, SI version’ (Cengage Learning, Stamford, CT, USA, 2012).
    28. 28)
      • 28. Hoevenaars, A.: ‘How harmonics have contributed to many power factor misconceptions’ (Mirus International Inc, Brampton, ON, Canada, 2014).
    29. 29)
      • 29. Gheydi, M., Golkar, M.J.: ‘Optimal capacitor placement in distribution network with consideration of annual load profile: case study Meshkinshahr distribution network’. IECON 2016–42nd Annual Conf. IEEE Industrial Electronics Society, Florence, Italy, October 2016, pp. 72087214.
    30. 30)
      • 30. IEEE guide for voltage regulation and reactive power compensation at 1000 kV AC and above’, IEEE Std 1860-2014, 2014, pp. 141.
    31. 31)
      • 31. IEEE recommended practice and requirements for harmonic control in electric power systems - redline’, IEEE Std 519-2014 (Revision of IEEE Std 519-1992) - Redline, 2014, pp. 1213.
    32. 32)
      • 32. Yang, X.-S., Deb, S.: ‘Cuckoo search via Lévy flights’. 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, December 2009, pp. 210214.
    33. 33)
      • 33. Shang, C., Srinivasan, D., Reindl, T.: ‘An improved particle swarm optimisation algorithm applied to battery sizing for stand-alone hybrid power systems’, Int. J. Electr. Power Energy Syst., 2016, 74, pp. 104117.
    34. 34)
      • 34. Eiben, A.E., Smith, J.E.: ‘Introduction to evolutionary computing’ (Springer, Berlin, Germany, 2003), vol. 53.
    35. 35)
      • 35. Hamada, M.M., Wahab, M.A., El-Sayed, A.-H.M., et al: ‘A new approach for capacitor allocation in radial distribution feeders’, Online J. Electron Electr. Eng. (OJEEE), 2006, 1, pp. 2429.
    36. 36)
      • 36. Savier, J., Das, D.: ‘Impact of network reconfiguration on loss allocation of radial distribution systems’, IEEE Trans. Power Deliv., 2007, 22, pp. 24732480.
    37. 37)
      • 37. Zhang, D., Fu, Z., Zhang, L.: ‘An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems’, Electr. Power Syst. Res., 2007, 77, pp. 685694.
    38. 38)
      • 38. Kaur, D., Sharma, J.: ‘Optimal conductor sizing in radial distribution systems planning’, Int. J. Electr. Power Energy, 2008, 30, (4), pp. 261271.
    39. 39)
      • 39. Ghosh, S., Das, D.: ‘Method for load-flow solution of radial distribution networks’, IEE Proc. Gener. Transm. Distrib., 1999, 146, pp. 641648.

Related content

This is a required field
Please enter a valid email address