Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Framework for current transformer saturation detection and waveform reconstruction

Due to current transformer (CT) saturation, the secondary current waveform may contain distortions which results in mal-operation of the protective system. This study presents a framework that attempts to detect and reconstruct saturated secondary current of the CT. To such aim, first an algorithm is proposed which detects and discriminates between normal and abnormal condition. This algorithm which is based on high-order derivatives and statistical criterion, classifies load change, inrush current and fault condition. In addition, this algorithm is designed so that it detects the first time that CT becomes saturated. After fault detection and phase fault selection, based on analytical and comprehensive formulations, the parameter of fault current signal is calculated in the sub-cycle. Moreover, the dynamic behaviour of the CT is considered in the waveform reconstruction. Several case studies are carried out to investigate the performance of the proposed method. Simulation results show that proposed method can effectively classify the inrush current and fault signal even in the CT saturation condition. Also, under different CT saturation condition, proposed method quickly and precisely detects and reconstructs saturated waveform without sacrificing details.

References

    1. 1)
      • 4. Oliveira, L.M.R., Cardoso, A.J.M.: ‘Extended Park's vector approach-based differential protection of three-phase power transformers’, IET Electr. Power Appl., 2012, 6, (8), pp. 463472.
    2. 2)
      • 7. Kang, Y.C., Lim, U.J., Kang, S.H., et al: ‘Compensation of the distortion in the secondary current caused by saturation and remanence in a CT’, IEEE Trans. Power Deliv., 2004, 19, pp. 16421649.
    3. 3)
      • 25. Tajdinian, M., Allahbakhshi, M., Seifi, A.R., et al: ‘Analytical discrete Fourier transformer-based phasor estimation method for reducing transient impact of capacitor voltage transformer’, IET Gener. Transm. Distrib., 2017, 11, (9), pp. 23242332.
    4. 4)
      • 26. Matlab User's Guide and Reference, Matlab/Simulink/SimPowerSystems Ver.7.3.
    5. 5)
      • 17. Chothani, N.G., Bhalja, B.R.: ‘New algorithm for current transformer saturation detection and compensation based on derivatives of secondary currents and Newton's backward difference formulae’, IET Gener. Transm. Distrib., 2014, 8, (5), pp. 841850.
    6. 6)
      • 8. Lu, Z., Smith, J.S., Wu, Q.H.: ‘Morphological lifting scheme for current transformer saturation detection and compensation’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2008, 55, (10), pp. 33493357.
    7. 7)
      • 6. Hajipour, E., Vakilian, M., Sanaye-Pasand, M.: ‘Current-transformer saturation compensation for transformer differential relays’, IEEE Trans. Power Deliv., 2015, 30, (5), pp. 22932302.
    8. 8)
      • 20. Hooshyar, A., Sanaye-Pasand, M.: ‘Accurate measurement of fault currents contaminated with decaying DC offset and CT saturation’, IEEE Trans. Power Deliv., 2012, 27, (2), pp. 773783.
    9. 9)
      • 16. Behi, D., Allahbakhshi, M., Bagheri, A., et al: ‘A new statistical-based algorithm for CT saturation detection utilizing residual-based similarity index’. 2017 Iranian Conf. Electrical Engineering (ICEE), Tehran, 2017, pp. 10721077.
    10. 10)
      • 5. Ozgonenel, O.: ‘Correction of saturated current from measurement current transformer’, IET Electr. Power Appl., 2013, 7, (7), pp. 580585.
    11. 11)
      • 21. Nam, S.R., Park, J.Y., Kang, S.H., et al: ‘Phasor estimation in the presence of dc offset and CT saturation’, IEEE Trans. Power Deliv., 2009, 24, pp. 18421849.
    12. 12)
      • 11. Hong, Y.Y., Chang-Chian, P.C.: ‘Detection and correction of distorted current transformer current using wavelet transform and artificial intelligence’, IET Gener. Transm. Distrib., 2008, 2, (4), pp. 566575.
    13. 13)
      • 2. Hooshyar, A., Afsharnia, S., Sanaye-Pasand, M., et al: ‘A new algorithm to identify magnetizing inrush conditions based on instantaneous frequency of differential power signal’, IEEE Trans. Power Deliv., 2010, 25, pp. 22232233.
    14. 14)
      • 12. Khorashadi-Zadeh, H., Sanaye-Pasand, M.: ‘Correction of saturated current transformers secondary current using ANNs’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 7379.
    15. 15)
      • 15. Bagheri, A., Allahbakhshi, M., Behi, D., et al: ‘Utilizing Rogowski coil for saturation detection and compensation in iron core current transformer’. 2017 Iranian Conf. Electrical Engineering (ICEE), Tehran, 2017, pp. 10661071.
    16. 16)
      • 19. Haghjoo, F., Pak, M.H.: ‘Compensation of CT distorted secondary current waveform in online conditions’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 711720.
    17. 17)
      • 24. Tajdinian, M., Seifi, A.R., Allahbakhshi, M.: ‘Half-cycle method for exponentially DC components elimination applicable in phasor estimation’, IET Sci. Meas. Technol., 2017, 11, (8), pp. 10321042.
    18. 18)
      • 3. Naghizadeh, R.A., Vahidi, B., Hosseinian, S.H.: ‘Modelling of inrush current in transformers using inverse Jiles–Atherton hysteresis model with a neuro-shuffled frog-leaping algorithm approach’, IET Electr. Power Appl., 2012, 6, (9), pp. 727734.
    19. 19)
      • 22. Tajdinian, M., Montaser Kouhsari, S., Mohseni, K., et al: ‘A novel method for decaying DC component removal with regard to frequency fluctuations’, COMPEL: Int. J. Comput. Math. Electr. Electron. Eng., 2016, 35, pp. 270288.
    20. 20)
      • 18. Ji, T.Y., He, Q., Shi, M.J., et al: ‘CT saturation detection and compensation using mathematical morphology and linear regression’. 2016 IEEE Innovative Smart Grid Technologies – Asia (ISGT-Asia), Melbourne, VIC, 2016, pp. 10541059.
    21. 21)
      • 23. Tajdinian, M., Jahromi, M.Z., Mohseni, K., et al: ‘An analytical approach for removal of decaying DC component considering frequency deviation’, Electr. Power Syst. Res., 2016, 130, pp. 208219.
    22. 22)
      • 14. Hooshyar, A., Sanaye-Pasand, M.: ‘Waveshape recognition technique to detect current transformer saturation’, IET Gener. Transm. Distrib., 2015, 9, (12), pp. 14301438.
    23. 23)
      • 1. Wu, Q.H., Lu, Z., Ji, T.Y.: ‘Protective relaying of power system using mathematical morphology’ (Springer-Verlag, London, NY, 2009), ch. 5.
    24. 24)
      • 13. Ji, T., Shi, M., Li, M., et al: ‘Current transformer saturation detection using morphological gradient and morphological decomposition and its hardware implementation’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 47214729.
    25. 25)
      • 9. Rebizant, W., Bejmert, D.: ‘Current transformer saturation detection with genetically optimized neural networks’. 2005 IEEE Russia Power Tech, St. Petersburg, 2005, pp. 16.
    26. 26)
      • 10. Erenturk, K.: ‘ANFIS-based compensation algorithm for current-transformer saturation effects’, IEEE Trans. Power Deliv., 2009, 24, (1), pp. 195201.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1742
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1742
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address