access icon free Algorithm for islanding detection in photovoltaic generator network connected to low-voltage grid

A new islanding detection method has been developed based on the analysis of negative sequence components of the voltage at the point of common coupling, using wavelet packet transform. The binary tree classifier is used for decision-making mechanism. The proposed algorithm is able to reduce the non-detection zone to zero and is able to detect islanding within 5 ms. The developed algorithm can also discriminate between the islanding and other events in the system. The simulation results carried out by MATLAB along with Simulink toolbox are used to test the performance of the proposed algorithm in a photovoltaic generator network connected to the low-voltage grid.

Inspec keywords: power distribution faults; power generation faults; distributed power generation; trees (mathematics); photovoltaic power systems; decision making; wavelet transforms; pattern classification; power grids

Other keywords: MATLAB; point of common coupling; nondetection zone reduction; Simulink toolbox; wavelet packet transform; decision making mechanism; photovoltaic generator network; negative sequence component analysis; low-voltage grid; islanding detection method; binary tree classifier

Subjects: Combinatorial mathematics; Integral transforms; Solar power stations and photovoltaic power systems; Distributed power generation

References

    1. 1)
      • 21. Saleh, S.A., Aljankawey, A.S., Meng, R., et al: ‘Anti-islanding protection based on signatures extracted from the instantaneous apparent power’, IEEE Trans. Power Electron., 2014, 29, (11), pp. 58725891.
    2. 2)
      • 25. Gupta, N, Garg, R.: ‘Tuning of asymmetrical fuzzy logic control algorithm for SPV system connected to grid’, Int. J. Hydrog. Energy, 2017, 42, (26), pp. 1637516385. doi: 10.1016/j.ijhydene.2017.05.103.
    3. 3)
      • 23. Gupta, N, Garg, R, Kumar, P.: ‘Sensitivity and reliability models of a PV system connected to the grid’, Renew. Sust. Energy Rev., 2017, 69, pp. 188196. doi: 10.1016/j.rser.2016.11.031.
    4. 4)
      • 18. Hanif, M., Basu, M., Gaughan, K.: ‘Development of EN50438 compliant wavelet-based islanding detection technique for three-phase static distributed generation systems’, IET Renew. Power Gener., 2012, 6, (4), pp. 289301.
    5. 5)
      • 4. Blaabjerg, F., Chen, Z., Kjaer, S.B.: ‘Power electronics as an efficient interface in dispersed power generation systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 11841194.
    6. 6)
      • 13. Vyas, S., Kumara, R., Kavasseri, R.: ‘Data analytics and computational methods for anti-islanding of renewable energy based distributed generators in power grids’, Renew. Sust. Energy Rev., 2017, 69, pp. 493502.
    7. 7)
      • 24. Gupta, N, Garg, R, Kumar, P.: ‘Characterization study of PV module connected to microgrid’. Proc. IEEE India Int. Conf. JMI, India, December 2015. doi: 10.1109/lNDICON.2015.7443360.
    8. 8)
      • 1. Guerrero, J.M., Blaabjerg, F., Zhelev, T., et al: ‘Distributed generation: toward a new energy paradigm’, IEEE Ind. Electron. Mag., 2010, 4, (1), pp. 5264.
    9. 9)
      • 2. Shahidehpour, M., Schwartz, F.: ‘Don't let the sun go down on PV’, IEEE Power Energy Mag., 2004, 2, (3), pp. 4048.
    10. 10)
      • 29. Do, H.T., Zhang, X., Nguyen, N.V., et al: ‘Passive-islanding detection method using the wavelet packet transform in grid-connected photovoltaic systems’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 69556967.
    11. 11)
      • 15. Jay-Hyung, K., Jun-Gu, K., Young-Hyok, J., et al: ‘An islanding detection method for a grid-connected system based on the Goertzel algorithm’, IEEE Trans.Power Electron., 2011, 26, (4), pp. 10491055.
    12. 12)
      • 8. Bower, W., Ropp, M.: ‘Evaluation of islanding detection methods for utility-interactive inverters in photovoltaic systems’. Sandia Rep. SAND2002-3591, Sandia Nat. Labs., Albuquerque, NM, USA, November 2002.
    13. 13)
      • 19. Heidari, M., Seifossadat, G., Razaz, M.: ‘Application of decision tree and discrete wavelet transform for an optimized intelligent based islanding detection method in distributed systems with distributed generations’, Renew. Sust. Energy Rev., 2013, 27, pp. 525532. doi: 10. 1016/j.rser.2013.06.047.
    14. 14)
      • 9. Freitas, W., Wilsun, X., Affonso, C.M., et al: ‘Comparative analysis between ROCOF and vector surge relays for distributed generation applications’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 13151324.
    15. 15)
      • 27. Available at http://nptel.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_7/7_2.html.
    16. 16)
      • 28. Available at http://in.mathworks.com/help/wavelet/examples/wavelet-packets-decomposing-the-details.html.
    17. 17)
      • 10. Samui, A., Samantaray, S.R.: ‘Assessment of ROCPAD relay for islanding detection in distributed generation’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 391398.
    18. 18)
      • 3. ‘IEEE recommended practice for utility interface of PV system’, IEEE standard 929-2000. January 2000.
    19. 19)
      • 11. Jang, S.-I., Kim, K.H.: ‘An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 745752.
    20. 20)
      • 22. Kar, S, Samantaray, S.R.: ‘Data-mining-based intelligent anti-islanding protection relay for distributed generations’, IET Gener.Transm.Distrib., 2014, 8, (4), pp. 629639.
    21. 21)
      • 20. Biswal, B, Dash, P.K., Panigrahi, B.K.: ‘Non-stationary power signal processing for pattern recognition using HS-transform’, Appl. Soft Comput., 2009, 9, (1), pp. 107117.
    22. 22)
      • 17. Karegar, H.K., Sobhani, B.: ‘Wavelet transform method for islanding detection of wind turbines’, Renew. Energy, 2014, 38, (1), pp. 94106.
    23. 23)
      • 16. Shayeghi, H., Sobhani, B.: ‘Zero NDZ assessment for anti-islanding protection using wavelet analysis and neuro-fuzzy system in an inverter-based distributed generation’, Energy Convers. Manage., 2014, 79, pp. 616625. doi: 10.1016/j.enconman.2013.12.062.
    24. 24)
      • 12. Raza, S., Mokhlis, H., Arof, H., et al: ‘Application of signal processing techniques for islanding detection of distributed generation in distribution network: a review’, Energy Convers. Manage., 2015, 96, pp. 613624.
    25. 25)
      • 5. ‘IEEE standard conformance test procedures for equipment interconnecting distributed resources with electric power systems’. IEEE Std. 15471-2005, July 2005.
    26. 26)
      • 14. Kim, I.S.: ‘Islanding detection technique using grid-harmonic parameters in the photovoltaic system’. Energy Procedia, 2012, pp. 137141.
    27. 27)
      • 7. Ye, Z., Kolwalkar, A., Zhang, Y., et al: ‘Evaluation of anti-islanding schemes based on non-detection zone concept’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 11711176.
    28. 28)
      • 26. Ray, P.K., Kishor, N., Mohanty, S.R.: ‘Islanding and power quality disturbance detection in grid-connected hybrid power system using wavelet and transform’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 10821094.
    29. 29)
      • 6. ‘Standard for Inverters, Converters, Controllers and Interconnection System Equipment for Use with Distributed Energy Resources’. UL STD 1741, November 2005.
    30. 30)
      • 30. Samui, A., Samantaray, S.R.: ‘Wavelet singular entropy-based islanding detection in distributed generation’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 411418.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1735
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1735
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading